Compare commits
34 Commits
coryab/cha
...
coryab/imp
| Author | SHA1 | Date | |
|---|---|---|---|
| 5147389217 | |||
| 85e469f101 | |||
| 439bcefcb4 | |||
| 02302e1255 | |||
| ca774e434f | |||
| b4325ec185 | |||
| 46d3a78767 | |||
|
|
5cc45d0d02 | ||
|
|
31eb457614 | ||
|
|
4919f488d4 | ||
|
|
1ab0a1a490 | ||
|
|
fc492b5cbf | ||
|
|
8ebd561f0d | ||
| 3cfee4ebdc | |||
| 6e12f2b050 | |||
| c5c64da196 | |||
| c256d9b1da | |||
| 3d87b400d8 | |||
| d886d3761e | |||
| 4e633d13b5 | |||
| 400e8a29df | |||
| 996b99fca3 | |||
|
|
271e3dd944 | ||
|
|
c42426847d | ||
|
|
13cbbc4e0e | ||
| e407ce073e | |||
| f2f50ed3e4 | |||
| 91cc7583af | |||
| 6f5d71e1a4 | |||
| 92bb63abb5 | |||
|
|
afef7c9d1a | ||
|
|
dd16ffd822 | ||
| 9a6eaddf8e | |||
| 2e6b2cf6bc |
8
.gitignore
vendored
8
.gitignore
vendored
@@ -36,3 +36,11 @@
|
||||
*.log
|
||||
*.out
|
||||
*.bib
|
||||
*.synctex.gz
|
||||
*.bbl
|
||||
|
||||
# C++ specifics
|
||||
src/*
|
||||
!src/Makefile
|
||||
!src/*.cpp
|
||||
!src/*.py
|
||||
|
||||
Binary file not shown.
@@ -1,7 +1,9 @@
|
||||
\documentclass[english,notitlepage]{revtex4-1} % defines the basic parameters of the document
|
||||
%For preview: skriv i terminal: latexmk -pdf -pvc filnavn
|
||||
|
||||
|
||||
% Silence warning of revtex4-1
|
||||
\usepackage{silence}
|
||||
\WarningFilter{revtex4-1}{Repair the float}
|
||||
|
||||
% if you want a single-column, remove reprint
|
||||
|
||||
@@ -13,7 +15,7 @@
|
||||
%% I recommend downloading TeXMaker, because it includes a large library of the most common packages.
|
||||
|
||||
\usepackage{physics,amssymb} % mathematical symbols (physics imports amsmath)
|
||||
\include{amsmath}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{graphicx} % include graphics such as plots
|
||||
\usepackage{xcolor} % set colors
|
||||
\usepackage{hyperref} % automagic cross-referencing (this is GODLIKE)
|
||||
@@ -72,10 +74,13 @@
|
||||
%%
|
||||
%% Don't ask me why, I don't know.
|
||||
|
||||
% custom stuff
|
||||
\graphicspath{{./images/}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\title{Project 1} % self-explanatory
|
||||
\author{Cory Balaton \& Janita Willumsen} % self-explanatory
|
||||
\author{Cory Alexander Balaton \& Janita Ovidie Sandtrøen Willumsen} % self-explanatory
|
||||
\date{\today} % self-explanatory
|
||||
\noaffiliation % ignore this, but keep it.
|
||||
|
||||
@@ -102,4 +107,6 @@
|
||||
|
||||
\input{problems/problem9}
|
||||
|
||||
\input{problems/problem10}
|
||||
|
||||
\end{document}
|
||||
|
||||
BIN
latex/images/analytical_solution.pdf
Normal file
BIN
latex/images/analytical_solution.pdf
Normal file
Binary file not shown.
@@ -1,8 +1,17 @@
|
||||
\section*{Problem 1}
|
||||
|
||||
First, we rearrange the equation.
|
||||
|
||||
\begin{align*}
|
||||
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\
|
||||
\frac{d^2u}{dx^2} &= -100 e^{-10x} \\
|
||||
\end{align*}
|
||||
|
||||
Now we find $u(x)$.
|
||||
|
||||
% Do the double integral
|
||||
\begin{align*}
|
||||
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
|
||||
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2 \\
|
||||
&= \int \int -100 e^{-10x} dx^2 \\
|
||||
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
|
||||
&= \int 10 e^{-10x} + c_1 dx \\
|
||||
@@ -10,7 +19,7 @@
|
||||
&= -e^{-10x} + c_1 x + c_2
|
||||
\end{align*}
|
||||
|
||||
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
|
||||
Using the boundary conditions, we can find $c_1$ and $c_2$
|
||||
|
||||
\begin{align*}
|
||||
u(0) &= 0 \\
|
||||
@@ -31,5 +40,5 @@ Using the values that we found for $c_1$ and $c_2$, we get
|
||||
|
||||
\begin{align*}
|
||||
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
|
||||
&= 1 - (1 - e^{-10}) - e^{-10x}
|
||||
&= 1 - (1 - e^{-10})x - e^{-10x}
|
||||
\end{align*}
|
||||
|
||||
@@ -1,3 +1,11 @@
|
||||
\section*{Problem 2}
|
||||
|
||||
% Write which .cpp/.hpp/.py (using a link?) files are relevant for this and show the plot generated.
|
||||
The code for generating the points and plotting them can be found under.
|
||||
|
||||
Point generator code: https://github.uio.no/FYS3150-G2-203/Project-1/blob/main/src/analyticPlot.cpp
|
||||
|
||||
Plotting code: https://github.uio.no/FYS3150-G2-2023/Project-1/blob/main/src/analyticPlot.py
|
||||
|
||||
Here is the plot of the analytical solution for $u(x)$.
|
||||
|
||||
\includegraphics[scale=.5]{analytical_solution.pdf}
|
||||
|
||||
@@ -1,4 +1,37 @@
|
||||
|
||||
\section*{Problem 3}
|
||||
|
||||
% Show how it's derived and where we found the derivation.
|
||||
To derive the discretized version of the Poisson equation, we first need
|
||||
the Taylor expansion for $u(x)$ around $x$ for $x + h$ and $x - h$.
|
||||
|
||||
\begin{align*}
|
||||
u(x+h) &= u(x) + u'(x) h + \frac{1}{2} u''(x) h^2 + \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
u(x-h) &= u(x) - u'(x) h + \frac{1}{2} u''(x) h^2 - \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
|
||||
\end{align*}
|
||||
|
||||
If we add the equations above, we get this new equation:
|
||||
|
||||
\begin{align*}
|
||||
u(x+h) + u(x-h) &= 2 u(x) + u''(x) h^2 + \mathcal{O}(h^4) \\
|
||||
u(x+h) - 2 u(x) + u(x-h) + \mathcal{O}(h^4) &= u''(x) h^2 \\
|
||||
u''(x) &= \frac{u(x+h) - 2 u(x) + u(x-h)}{h^2} + \mathcal{O}(h^2) \\
|
||||
u_i''(x) &= \frac{u_{i+1} - 2 u_i + u_{i-1}}{h^2} + \mathcal{O}(h^2) \\
|
||||
\end{align*}
|
||||
|
||||
We can then replace $\frac{d^2u}{dx^2}$ with the RHS (right-hand side) of the equation:
|
||||
|
||||
\begin{align*}
|
||||
- \frac{d^2u}{dx^2} &= f(x) \\
|
||||
\frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} + \mathcal{O}(h^2) &= f_i \\
|
||||
\end{align*}
|
||||
|
||||
And lastly, we leave out $\mathcal{O}(h^2)$ and change $u_i$ to $v_i$ to
|
||||
differentiate between the exact solution and the approximate solution,
|
||||
and get the discretized version of the equation:
|
||||
|
||||
\begin{align*}
|
||||
\frac{ - v_{i+1} + 2 v_i - v_{i-1}}{h^2} &= 100 e^{-10x_i} \\
|
||||
\end{align*}
|
||||
|
||||
@@ -1,3 +1,44 @@
|
||||
\section*{Problem 4}
|
||||
|
||||
% Show that each iteration of the discretized version naturally creates a matrix equation.
|
||||
|
||||
The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we solve for $\vec{v}$. This will result in a set of equations
|
||||
\begin{align*}
|
||||
- v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\
|
||||
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||
\vdots & \\
|
||||
- v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\
|
||||
\end{align*}
|
||||
|
||||
where $v_{i} = v(x_{i})$ and $f_{i} = f(x_{i})$. Rearranging the first and last equation, moving terms of known boundary values to the RHS
|
||||
\begin{align*}
|
||||
2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\
|
||||
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||
\vdots & \\
|
||||
- v_{m-2} + 2 v_{m-1} &= h^{2} \cdot f_{m-1} + v_{m} \\
|
||||
\end{align*}
|
||||
|
||||
We now have a number of linear eqations, corresponding to the number of unknown values, which can be represented as an augmented matrix
|
||||
\begin{align*}
|
||||
\left[
|
||||
\begin{matrix}
|
||||
2v_{1} & -v_{2} & 0 & \dots & 0 \\
|
||||
-v_{1} & 2v_{2} & -v_{3} & 0 & \\
|
||||
0 & -v_{2} & 2v_{3} & -v_{4} & \\
|
||||
\vdots & & & \ddots & \vdots \\
|
||||
0 & & & -v_{m-2} & 2v_{m-1} \\
|
||||
\end{matrix}
|
||||
\left|
|
||||
\,
|
||||
\begin{matrix}
|
||||
g_{1} \\
|
||||
g_{2} \\
|
||||
g_{2} \\
|
||||
\vdots \\
|
||||
g_{m-1} \\
|
||||
\end{matrix}
|
||||
\right.
|
||||
\right]
|
||||
\end{align*}
|
||||
Since the boundary values are equal to $0$ the RHS can be renamed $g_{i} = h^{2} f_{i}$ for all $i$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$.
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
|
||||
\section*{Problem 5}
|
||||
|
||||
\subsection*{a)}
|
||||
\subsection*{a \& b)}
|
||||
|
||||
\subsection*{b)}
|
||||
$n = m - 2$ since when solving for $\vec{v}$, we are finding the solutions for all the points that are in between the boundaries and not the boundaries themselves. $\vec{v}^*$ on the other hand includes the boundary points.
|
||||
|
||||
@@ -1,9 +1,47 @@
|
||||
\section*{Problem 6}
|
||||
|
||||
\subsection*{a)}
|
||||
|
||||
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
||||
Renaming the sub-, main-, and supdiagonal of matrix $\boldsymbol{A}$
|
||||
\begin{align*}
|
||||
\vec{a} &= [a_{2}, a_{3}, ..., a_{n-1}, a_{n}] \\
|
||||
\vec{b} &= [b_{1}, b_{2}, b_{3}, ..., b_{n-1}, b_{n}] \\
|
||||
\vec{c} &= [c_{1}, c_{2}, c_{3}, ..., c_{n-1}] \\
|
||||
\end{align*}
|
||||
|
||||
Following Thomas algorithm for gaussian elimination, we first perform a forward sweep followed by a backward sweep to obtain $\vec{v}$
|
||||
\begin{algorithm}[H]
|
||||
\caption{General algorithm}\label{algo:general}
|
||||
\begin{algorithmic}
|
||||
\Procedure{Forward sweep}{$\vec{a}$, $\vec{b}$, $\vec{c}$}
|
||||
\State $n \leftarrow$ length of $\vec{b}$
|
||||
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||
\State $\hat{b}_{1} \leftarrow b_{1}$ \Comment{Handle first element in main diagonal outside loop}
|
||||
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||
\For{$i = 2, 3, ..., n$}
|
||||
\State $d \leftarrow \frac{a_{i}}{\hat{b}_{i-1}}$ \Comment{Calculating common expression}
|
||||
\State $\hat{b}_{i} \leftarrow b_{i} - d \cdot c_{i-1}$
|
||||
\State $\hat{g}_{i} \leftarrow g_{i} - d \cdot \hat{g}_{i-1}$
|
||||
\EndFor
|
||||
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||
\EndProcedure
|
||||
|
||||
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||
\For{$i = n-1, n-2, ..., 1$}
|
||||
\State $v_{i} \leftarrow \frac{\hat{g}_{i} - c_{i} \cdot v_{i+1}}{\hat{b}_{i}}$
|
||||
\EndFor
|
||||
\Return $\vec{v}$
|
||||
\EndProcedure
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
|
||||
|
||||
\subsection*{b)}
|
||||
|
||||
% Figure it out
|
||||
% Figure out FLOPs
|
||||
Counting the number of FLOPs for the general algorithm by looking at one procedure at a time.
|
||||
For every iteration of i in forward sweep we have 1 division, 2 multiplications, and 2 subtractions, resulting in $5(n-1)$ FLOPs.
|
||||
For backward sweep we have 1 division, and for every iteration of i we have 1 subtraction, 1 multiplication, and 1 division, resulting in $3(n-1)+1$ FLOPs.
|
||||
Total FLOPs for the general algorithm is $8(n-1)+1$.
|
||||
|
||||
@@ -1,3 +1,55 @@
|
||||
\section*{Problem 9}
|
||||
|
||||
% Show the algorithm, then calculate FLOPs, then link to relevant files
|
||||
\subsection*{a)}
|
||||
% Specialize algorithm
|
||||
The special algorithm does not require the values of all $a_{i}$, $b_{i}$, $c_{i}$.
|
||||
We find the values of $\hat{b}_{i}$ from simplifying the general case
|
||||
\begin{align*}
|
||||
\hat{b}_{i} &= b_{i} - \frac{a_{i} \cdot c_{i-1}}{\hat{b}_{i-1}} \\
|
||||
\hat{b}_{i} &= 2 - \frac{1}{\hat{b}_{i-1}}
|
||||
\end{align*}
|
||||
Calculating the first values to see a pattern
|
||||
\begin{align*}
|
||||
\hat{b}_{1} &= 2 \\
|
||||
\hat{b}_{2} &= 2 - \frac{1}{2} = \frac{3}{2} \\
|
||||
\hat{b}_{3} &= 2 - \frac{1}{\frac{3}{2}} = \frac{4}{3} \\
|
||||
\hat{b}_{4} &= 2 - \frac{1}{\frac{4}{3}} = \frac{5}{4} \\
|
||||
\vdots & \\
|
||||
\hat{b}_{i} &= \frac{i+1}{i} && \text{for $i = 1, 2, ..., n$}
|
||||
\end{align*}
|
||||
|
||||
|
||||
\begin{algorithm}[H]
|
||||
\caption{Special algorithm}\label{algo:special}
|
||||
\begin{algorithmic}
|
||||
\Procedure{Forward sweep}{$\vec{b}$}
|
||||
\State $n \leftarrow$ length of $\vec{b}$
|
||||
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||
\State $\hat{b}_{1} \leftarrow 2$ \Comment{Handle first element in main diagonal outside loop}
|
||||
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||
\For{$i = 2, 3, ..., n$}
|
||||
\State $\hat{b}_{i} \leftarrow \frac{i+1}{i}$
|
||||
\State $\hat{g}_{i} \leftarrow g_{i} + \frac{\hat{g}_{i-1}}{\hat{b}_{i-1}}$
|
||||
\EndFor
|
||||
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||
\EndProcedure
|
||||
|
||||
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||
\For{$i = n-1, n-2, ..., 1$}
|
||||
\State $v_{i} \leftarrow \frac{\hat{g}_{i} + v_{i+1}}{\hat{b}_{i}}$
|
||||
\EndFor
|
||||
\Return $\vec{v}$
|
||||
\EndProcedure
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
|
||||
|
||||
\subsection*{b)}
|
||||
% Find FLOPs
|
||||
For every iteration of i in forward sweep we have 2 divisions, and 2 additions, resulting in $4(n-1)$ FLOPs.
|
||||
For backward sweep we have 1 division, and for every iteration of i we have 1 addition, and 1 division, resulting in $2(n-1)+1$ FLOPs.
|
||||
Total FLOPs for the special algorithm is $6(n-1)+1$.
|
||||
|
||||
|
||||
17
src/Makefile
Normal file
17
src/Makefile
Normal file
@@ -0,0 +1,17 @@
|
||||
CC=g++
|
||||
|
||||
.PHONY: clean
|
||||
|
||||
all: simpleFile analyticPlot
|
||||
|
||||
simpleFile: simpleFile.o
|
||||
$(CC) -o $@ $^
|
||||
|
||||
analyticPlot: analyticPlot.o
|
||||
$(CC) -o $@ $^
|
||||
|
||||
%.o: %.cpp
|
||||
$(CC) -c $< -o $@
|
||||
|
||||
clean:
|
||||
rm *.o
|
||||
55
src/analyticPlot.cpp
Normal file
55
src/analyticPlot.cpp
Normal file
@@ -0,0 +1,55 @@
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <numeric>
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
|
||||
#define RANGE 1000
|
||||
#define FILENAME "analytical_solution.txt"
|
||||
|
||||
double u(double x);
|
||||
void generate_range(std::vector<double> &vec, double start, double stop, int n);
|
||||
void write_analytical_solution(std::string filename, int n);
|
||||
|
||||
int main() {
|
||||
write_analytical_solution(FILENAME, RANGE);
|
||||
|
||||
return 0;
|
||||
};
|
||||
|
||||
double u(double x) {
|
||||
return 1 - (1 - exp(-10))*x - exp(-10*x);
|
||||
};
|
||||
|
||||
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
|
||||
double step = (stop - start) / n;
|
||||
|
||||
for (int i = 0; i <= vec.size(); i++) {
|
||||
vec[i] = i * step;
|
||||
}
|
||||
}
|
||||
|
||||
void write_analytical_solution(std::string filename, int n) {
|
||||
std::vector<double> x(n), y(n);
|
||||
generate_range(x, 0.0, 1.0, n);
|
||||
|
||||
// Set up output file and strem
|
||||
std::ofstream outfile;
|
||||
outfile.open(filename);
|
||||
|
||||
// Parameters for formatting
|
||||
int width = 12;
|
||||
int prec = 4;
|
||||
|
||||
// Calculate u(x) and write to file
|
||||
for (int i = 0; i <= x.size(); i++) {
|
||||
y[i] = u(x[i]);
|
||||
outfile << std::setw(width) << std::setprecision(prec) << std::scientific << x[i]
|
||||
<< std::setw(width) << std::setprecision(prec) << std::scientific << y[i]
|
||||
<< std::endl;
|
||||
}
|
||||
outfile.close();
|
||||
}
|
||||
|
||||
19
src/analyticPlot.py
Normal file
19
src/analyticPlot.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def main():
|
||||
FILENAME = "analytical_solution.pdf"
|
||||
x = []
|
||||
v = []
|
||||
|
||||
with open('analytical_solution.txt') as f:
|
||||
for line in f:
|
||||
a, b = line.strip().split()
|
||||
x.append(float(a))
|
||||
v.append(float(b))
|
||||
|
||||
plt.plot(x, v)
|
||||
plt.savefig(FILENAME)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -15,7 +15,7 @@ arma::vec* general_algorithm(
|
||||
arma::vec* g_vec
|
||||
)
|
||||
{
|
||||
int n = main_diag->n_elem;
|
||||
int n = g_vec->n_elem;
|
||||
double d;
|
||||
|
||||
for (int i = 1; i < n; i++) {
|
||||
@@ -40,6 +40,21 @@ arma::vec* special_algorithm(
|
||||
arma::vec* g_vec
|
||||
)
|
||||
{
|
||||
int n = g_vec->n_elem;
|
||||
arma::vec diag = arma::vec(n);
|
||||
|
||||
for (int i = 1; i < n; i++) {
|
||||
// Calculate values for main diagonal based on indices
|
||||
diag(i-1) = (double)(i+1) / i;
|
||||
(*g_vec)(i) += (*g_vec)(i-1) / diag(i-1);
|
||||
}
|
||||
// The last element in main diagonal has value (i+1)/i = (n+1)/n
|
||||
(*g_vec)(n-1) /= (double)(n+1) / (n);
|
||||
|
||||
for (int i = n-2; i >= 0; i--) {
|
||||
(*g_vec)(i) = ((*g_vec)(i) + (*g_vec)(i+1))/ diag(i);
|
||||
}
|
||||
|
||||
return g_vec;
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user