17 Commits

Author SHA1 Message Date
5f0363b895 Some stuff 2023-09-12 17:34:40 +02:00
c9f9757957 Merge branch 'main' into coryab/final-run 2023-09-11 18:38:19 +02:00
626d8408af Generate pdf 2023-09-11 18:37:33 +02:00
aba17398d8 Make some corrections 2023-09-11 18:34:10 +02:00
3ac132c831 Stuff 2023-09-11 18:28:42 +02:00
0edaae5b3f Make some changes 2023-09-11 18:28:14 +02:00
bb01d6fa79 Generated plots 2023-09-11 18:27:32 +02:00
a15f8a1da3 Make some changes 2023-09-11 18:27:03 +02:00
3e7f805937 Update gitignore and clean up 2023-09-11 18:25:31 +02:00
0a9e484ed3 Make changes 2023-09-11 10:40:57 +02:00
54f5d4ab5d Make some changes 2023-09-10 22:44:28 +02:00
fd04f740fd Merge pull request #21 from FYS3150-G2-2023/coryab/implement-problem-5
Coryab/implement problem 5
2023-09-10 13:06:48 +02:00
5147389217 Merge branch 'main' into coryab/implement-problem-5 2023-09-10 13:05:56 +02:00
85e469f101 Stuff 2023-09-10 12:58:56 +02:00
439bcefcb4 Merge pull request #20 from FYS3150-G2-2023/9-solve-problem-9
9 solve problem 9
2023-09-10 12:57:06 +02:00
02302e1255 Merge pull request #19 from FYS3150-G2-2023/6-solve-problem-6
Finished exercise 6
2023-09-10 12:56:54 +02:00
46d3a78767 Implement problem 5 and a bit more 2023-09-10 12:41:15 +02:00
25 changed files with 442 additions and 193 deletions

1
.gitignore vendored
View File

@@ -43,4 +43,5 @@
src/*
!src/Makefile
!src/*.cpp
!src/*.hpp
!src/*.py

View File

@@ -3,3 +3,36 @@
## Practical information
- [Project](https://anderkve.github.io/FYS3150/book/projects/project1.html)
## How to compile C++ code
Make sure that you are inside the **src** directory before compiling the code.
Now you can execute the command shown under to compile:
´´´
make
´´´
This will create object files and link them together into 2 executable files.
These files are called **main** and **analyticPlot**.
To run them, you can simply use the commands below:
´´´
./main
´´´
´´´
./analyticPlot
´´´
## How to generate plots
For generating the plots, there are 4 Python scripts.
You can run each one of them by using this command:
´´´
python <PythonFile>
´´´
The plots will be saved inside **latex/images**.

BIN
latex/assignment_1.pdf Normal file

Binary file not shown.

View File

@@ -80,7 +80,7 @@
\begin{document}
\title{Project 1} % self-explanatory
\author{Cory Balaton \& Janita Willumsen} % self-explanatory
\author{Cory Alexander Balaton \& Janita Ovidie Sandtrøen Willumsen} % self-explanatory
\date{\today} % self-explanatory
\noaffiliation % ignore this, but keep it.
@@ -107,4 +107,6 @@
\input{problems/problem9}
\input{problems/problem10}
\end{document}

BIN
latex/images/problem10.pdf Normal file

Binary file not shown.

BIN
latex/images/problem7.pdf Normal file

Binary file not shown.

BIN
latex/images/problem8.pdf Normal file

Binary file not shown.

View File

@@ -40,5 +40,5 @@ Using the values that we found for $c_1$ and $c_2$, we get
\begin{align*}
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
&= 1 - (1 - e^{-10}) - e^{-10x}
&= 1 - (1 - e^{-10})x - e^{-10x}
\end{align*}

View File

@@ -1,6 +1,6 @@
\section*{Problem 5}
\subsection*{a)}
\subsection*{a \& b)}
\subsection*{b)}
$n = m - 2$ since when solving for $\vec{v}$, we are finding the solutions for all the points that are in between the boundaries and not the boundaries themselves. $\vec{v}^*$ on the other hand includes the boundary points.

View File

@@ -44,4 +44,4 @@ Following Thomas algorithm for gaussian elimination, we first perform a forward
Counting the number of FLOPs for the general algorithm by looking at one procedure at a time.
For every iteration of i in forward sweep we have 1 division, 2 multiplications, and 2 subtractions, resulting in $5(n-1)$ FLOPs.
For backward sweep we have 1 division, and for every iteration of i we have 1 subtraction, 1 multiplication, and 1 division, resulting in $3(n-1)+1$ FLOPs.
Total FLOPs for the general algorithm is $8(n-1)+1$.
Total FLOPs for the general algorithm is $8(n-1)+1$.

View File

@@ -1,3 +1,9 @@
\section*{Problem 7}
\subsection*{a)}
% Link to relevant files on gh and possibly add some comments
The code can be found at https://github.uio.no/FYS3150-G2-2023/Project-1/blob/coryab/final-run/src/generalAlgorithm.cpp
\subsection*{b)}
\includegraphics{problem7}

View File

@@ -1,17 +1,30 @@
CC=g++
.PHONY: clean
CCFLAGS= -std=c++11
all: simpleFile analyticPlot
OBJS=generalAlgorithm.o specialAlgorithm.o funcs.o
simpleFile: simpleFile.o
$(CC) -o $@ $^
EXEC=main analyticPlot
.PHONY: clean create_dirs
all: create_dirs $(EXEC)
main: main.o $(OBJS)
$(CC) $(CCFLAGS) -o $@ $^
analyticPlot: analyticPlot.o
$(CC) -o $@ $^
$(CC) $(CCFLAGS) -o $@ $^
%.o: %.cpp
$(CC) -c $< -o $@
$(CC) $(CCFLAGS) -c -o $@ $^
clean:
rm *.o
rm $(EXEC)
rm -r output
create_dirs:
mkdir -p output/general
mkdir -p output/special
mkdir -p output/error

38
src/funcs.cpp Normal file
View File

@@ -0,0 +1,38 @@
#include "funcs.hpp"
double f(double x) {
return 100*std::exp(-10*x);
}
double u(double x) {
return 1. - (1. - std::exp(-10.))*x - std::exp(-10.*x);
}
void build_g_vec(int n_steps, arma::vec& g_vec) {
g_vec.resize(n_steps-1);
double step_size = 1./ (double) n_steps;
for (int i=0; i < n_steps-1; i++) {
g_vec(i) = step_size*step_size*f((i+1)*step_size);
}
}
void build_arrays(
int n_steps,
arma::vec& sub_diag,
arma::vec& main_diag,
arma::vec& sup_diag,
arma::vec& g_vec
)
{
sub_diag.resize(n_steps-2);
main_diag.resize(n_steps-1);
sup_diag.resize(n_steps-2);
sub_diag.fill(-1);
main_diag.fill(2);
sup_diag.fill(-1);
build_g_vec(n_steps, g_vec);
}

22
src/funcs.hpp Normal file
View File

@@ -0,0 +1,22 @@
#ifndef __FUNCS__
#define __FUNCS__
#include <armadillo>
#include <cmath>
#define PRECISION 20
double f(double x);
double u(double x);
void build_g_vec(int n_steps, arma::vec& g_vec);
void build_arrays(
int n_steps,
arma::vec& sub_diag,
arma::vec& main_diag,
arma::vec& sup_diag,
arma::vec& g_vec
);
#endif

84
src/generalAlgorithm.cpp Normal file
View File

@@ -0,0 +1,84 @@
#include "funcs.hpp"
#include "generalAlgorithm.hpp"
#include <cmath>
arma::vec& general_algorithm(
arma::vec& sub_diag,
arma::vec& main_diag,
arma::vec& sup_diag,
arma::vec& g_vec
)
{
int n = g_vec.n_elem;
double d;
for (int i = 1; i < n; i++) {
d = sub_diag(i-1) / main_diag(i-1);
main_diag(i) -= d*sup_diag(i-1);
g_vec(i) -= d*g_vec(i-1);
}
g_vec(n-1) /= main_diag(n-1);
for (int i = n-2; i >= 0; i--) {
g_vec(i) = (g_vec(i) - sup_diag(i) * g_vec(i+1)) / main_diag(i);
}
return g_vec;
}
void general_algorithm_main()
{
arma::vec sub_diag, main_diag, sup_diag, g_vec, v_vec;
std::ofstream ofile;
int steps;
double step_size;
for (int i = 0; i < 6; i++) {
steps = std::pow(10, i+1);
step_size = 1./(double) steps;
build_arrays(steps, sub_diag, main_diag, sup_diag, g_vec);
v_vec = general_algorithm(sub_diag, main_diag, sup_diag, g_vec);
ofile.open("output/general/out_" + std::to_string(steps) + ".txt");
for (int j=0; j < v_vec.n_elem; j++) {
ofile << std::setprecision(PRECISION) << std::scientific << step_size*(j+1) << ","
<< std::setprecision(PRECISION) << std::scientific << v_vec(j) << std::endl;
}
ofile.close();
}
}
void general_algorithm_error()
{
arma::vec sub_diag, main_diag, sup_diag, g_vec, v_vec;
std::ofstream ofile;
int steps;
double step_size, abs_err, rel_err, u_i, v_i;
for (int i=0; i < 7; i++) {
steps = std::pow(10, i+1);
step_size = 1./(double) steps;
build_arrays(steps, sub_diag, main_diag, sup_diag, g_vec);
v_vec = general_algorithm(sub_diag, main_diag, sup_diag, g_vec);
ofile.open("output/error/out_" + std::to_string(steps) + ".txt");
for (int j=0; j < v_vec.n_elem; j++) {
u_i = u(step_size*(j+1));
v_i = v_vec(j);
abs_err = u_i - v_i;
ofile << std::setprecision(PRECISION) << std::scientific
<< step_size*(j+1) << ","
<< std::setprecision(PRECISION) << std::scientific
<< std::log10(std::abs(abs_err)) << ","
<< std::setprecision(PRECISION) << std::scientific
<< std::log10(std::abs(abs_err/u_i)) << std::endl;
}
ofile.close();
}
}

18
src/generalAlgorithm.hpp Normal file
View File

@@ -0,0 +1,18 @@
#ifndef __GENERAL_ALG__
#define __GENERAL_ALG__
#include <armadillo>
#include <iomanip>
arma::vec& general_algorithm(
arma::vec& sub_diag,
arma::vec& main_diag,
arma::vec& sup_diag,
arma::vec& g_vec
);
void general_algorithm_main();
void general_algorithm_error();
#endif

View File

@@ -1,24 +1,68 @@
#include "GeneralAlgorithm.hpp"
#include <armadillo>
#include <iostream>
#include <cmath>
#include <ctime>
#include <fstream>
#include <iomanip>
#include <ios>
#include <string>
double f(double x) {
return 100. * std::exp(-10.*x);
#include "funcs.hpp"
#include "generalAlgorithm.hpp"
#include "specialAlgorithm.hpp"
#define TIMING_ITERATIONS 5
void timing() {
arma::vec sub_diag, main_diag, sup_diag, g_vec;
int n_steps;
std::ofstream ofile;
ofile.open("output/timing.txt");
// Timing
for (int i=1; i <= 6; i++) {
n_steps = std::pow(10, i);
clock_t g_1, g_2, s_1, s_2;
double g_res = 0, s_res = 0;
// Repeat a number of times to take an average
for (int j=0; j < TIMING_ITERATIONS; j++) {
build_arrays(n_steps, sub_diag, main_diag, sup_diag, g_vec);
g_1 = clock();
general_algorithm(sub_diag, main_diag, sup_diag, g_vec);
g_2 = clock();
g_res += (double) (g_2 - g_1) / CLOCKS_PER_SEC;
// Rebuild g_vec for the special alg
build_g_vec(n_steps, g_vec);
s_1 = clock();
special_algorithm(-1., 2., -1., g_vec);
s_2 = clock();
s_res += (double) (s_2 - s_1) / CLOCKS_PER_SEC;
}
// Write the average time to file
ofile
<< n_steps << ","
<< g_res / (double) TIMING_ITERATIONS << ","
<< s_res / (double) TIMING_ITERATIONS << std::endl;
}
ofile.close();
}
double a_sol(double x) {
return 1. - (1. - std::exp(-10)) * x - std::exp(-10*x);
}
int main() {
arma::mat A = arma::eye(3,3);
GeneralAlgorithm ga(3, &A, f, a_sol, 0., 1.);
ga.solve();
std::cout << "Time: " << ga.time(5) << std::endl;
ga.error();
return 0;
int main()
{
timing();
general_algorithm_main();
general_algorithm_error();
special_algorithm_main();
}

View File

@@ -2,7 +2,7 @@ import numpy as np
import matplotlib.pyplot as plt
def main():
FILENAME = "analytical_solution.pdf"
FILENAME = "../latex/images/analytical_solution.pdf"
x = []
v = []

30
src/plot_general_alg.py Normal file
View File

@@ -0,0 +1,30 @@
import matplotlib.pyplot as plt
import numpy as np
analytical_func = lambda x: 1 - (1 - np.exp(-10))*x - np.exp(-10*x)
def main():
for i in range(6):
x = []
y = []
x.append(0.)
y.append(0.)
with open(f"output/general/out_{10**(i+1)}.txt", "r") as f:
lines = f.readlines()
for line in lines:
x_i, y_i = line.strip().split(",")
x.append(float(x_i))
y.append(float(y_i))
x.append(1.)
y.append(0.)
plt.plot(x, y, label=f"n_steps={10**(i+1)}")
x = np.linspace(0, 1, 1001)
plt.plot(x, analytical_func(x), label="analytical plot")
plt.legend()
plt.savefig("../latex/images/problem7.pdf")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,29 @@
import matplotlib.pyplot as plt
def main():
fig, axs = plt.subplots(1)
for i in range(6):
x = []
abs_err = []
rel_err = []
with open(f"output/error/out_{10**(i+1)}.txt", "r") as f:
lines = f.readlines()
for line in lines:
x_i, abs_err_i, rel_err_i = line.strip().split(",")
x.append(float(x_i))
abs_err.append(float(abs_err_i))
rel_err.append(float(rel_err_i))
axs[0].plot(x, abs_err, label=f"abs_err {10**(i+1)} steps")
axs[1].plot(x, rel_err, label=f"rel_err {10**(i+1)} steps")
print(max(rel_err))
axs[2].plot(i+1, max(rel_err), marker="o", markersize=10)
axs[0].legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
axs[1].legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.savefig("../latex/images/problem8.pdf", bbox_inches="tight")
fig.2
if __name__ == "__main__":
main()

View File

View File

@@ -1,162 +0,0 @@
#include <armadillo>
#include <cmath>
#include <ctime>
#include <fstream>
#include <iomanip>
#include <ios>
#include <string>
#define TIMING_ITERATIONS 5
arma::vec* general_algorithm(
arma::vec* sub_diag,
arma::vec* main_diag,
arma::vec* sup_diag,
arma::vec* g_vec
)
{
int n = g_vec->n_elem;
double d;
for (int i = 1; i < n; i++) {
d = (*sub_diag)(i-1) / (*main_diag)(i-1);
(*main_diag)(i) -= d*(*sup_diag)(i-1);
(*g_vec)(i) -= d*(*g_vec)(i-1);
}
(*g_vec)(n-1) /= (*main_diag)(n-1);
for (int i = n-2; i >= 0; i--) {
(*g_vec)(i) = ((*g_vec)(i) - (*sup_diag)(i) * (*g_vec)(i+1)) / (*main_diag)(i);
}
return g_vec;
}
arma::vec* special_algorithm(
double sub_sig,
double main_sig,
double sup_sig,
arma::vec* g_vec
)
{
int n = g_vec->n_elem;
arma::vec diag = arma::vec(n);
for (int i = 1; i < n; i++) {
// Calculate values for main diagonal based on indices
diag(i-1) = (double)(i+1) / i;
(*g_vec)(i) += (*g_vec)(i-1) / diag(i-1);
}
// The last element in main diagonal has value (i+1)/i = (n+1)/n
(*g_vec)(n-1) /= (double)(n+1) / (n);
for (int i = n-2; i >= 0; i--) {
(*g_vec)(i) = ((*g_vec)(i) + (*g_vec)(i+1))/ diag(i);
}
return g_vec;
}
void error(
std::string filename,
arma::vec* x_vec,
arma::vec* v_vec,
arma::vec* a_vec
)
{
std::ofstream ofile;
ofile.open(filename);
if (!ofile.is_open()) {
exit(1);
}
for (int i=0; i < a_vec->n_elem; i++) {
double sub = (*a_vec)(i) - (*v_vec)(i);
ofile << std::setprecision(8) << std::scientific << (*x_vec)(i)
<< std::setprecision(8) << std::scientific << std::log10(std::abs(sub))
<< std::setprecision(8) << std::scientific << std::log10(std::abs(sub/(*a_vec)(i)))
<< std::endl;
}
ofile.close();
}
double f(double x) {
return 100*std::exp(-10*x);
}
void build_array(
int n_steps,
arma::vec* sub_diag,
arma::vec* main_diag,
arma::vec* sup_diag,
arma::vec* g_vec
)
{
sub_diag->resize(n_steps-2);
main_diag->resize(n_steps-1);
sup_diag->resize(n_steps-2);
sub_diag->fill(-1);
main_diag->fill(2);
sup_diag->fill(-1);
g_vec->resize(n_steps-1);
double step_size = 1./ (double) n_steps;
for (int i=0; i < n_steps-1; i++) {
(*g_vec)(i) = f((i+1)*step_size);
}
}
void timing() {
arma::vec sub_diag, main_diag, sup_diag, g_vec;
int n_steps;
std::ofstream ofile;
ofile.open("timing.txt");
// Timing
for (int i=1; i <= 8; i++) {
n_steps = std::pow(10, i);
clock_t g_1, g_2, s_1, s_2;
double g_res = 0, s_res = 0;
for (int j=0; j < TIMING_ITERATIONS; j++) {
build_array(n_steps, &sub_diag, &main_diag, &sup_diag, &g_vec);
g_1 = clock();
general_algorithm(&sub_diag, &main_diag, &sup_diag, &g_vec);
g_2 = clock();
g_res += (double) (g_2 - g_1) / CLOCKS_PER_SEC;
build_array(n_steps, &sub_diag, &main_diag, &sup_diag, &g_vec);
s_1 = clock();
special_algorithm(-1., 2., -1., &g_vec);
s_2 = clock();
s_res += (double) (s_2 - s_1) / CLOCKS_PER_SEC;
}
ofile
<< n_steps << ","
<< g_res / (double) TIMING_ITERATIONS << ","
<< s_res / (double) TIMING_ITERATIONS << std::endl;
}
ofile.close();
}
int main()
{
timing();
}

52
src/specialAlgorithm.cpp Normal file
View File

@@ -0,0 +1,52 @@
#include "funcs.hpp"
#include "specialAlgorithm.hpp"
arma::vec& special_algorithm(
double sub_sig,
double main_sig,
double sup_sig,
arma::vec& g_vec
)
{
int n = g_vec.n_elem;
arma::vec diag = arma::vec(n);
for (int i = 1; i < n; i++) {
// Calculate values for main diagonal based on indices
diag(i-1) = (double)(i+1) / i;
g_vec(i) += g_vec(i-1) / diag(i-1);
}
// The last element in main diagonal has value (i+1)/i = (n+1)/n
g_vec(n-1) /= (double)(n+1) / (n);
for (int i = n-2; i >= 0; i--) {
g_vec(i) = (g_vec(i) + g_vec(i+1))/ diag(i);
}
return g_vec;
}
void special_algorithm_main()
{
arma::vec g_vec, v_vec;
std::ofstream ofile;
int steps;
double sub_sig, main_sig, sup_sig, step_size;
for (int i = 0; i < 6; i++) {
steps = std::pow(10, i+1);
step_size = 1./(double) steps;
build_g_vec(steps, g_vec);
v_vec = special_algorithm(sub_sig, main_sig, sup_sig, g_vec);
ofile.open("output/special/out_" + std::to_string(steps) + ".txt");
for (int j=0; j < v_vec.n_elem; j++) {
ofile << std::setprecision(PRECISION) << std::scientific << step_size*(j+1) << ","
<< std::setprecision(PRECISION) << std::scientific << v_vec(j) << std::endl;
}
ofile.close();
}
}

16
src/specialAlgorithm.hpp Normal file
View File

@@ -0,0 +1,16 @@
#ifndef __SPECIAL_ALG__
#define __SPECIAL_ALG__
#include <armadillo>
#include <iomanip>
arma::vec& special_algorithm(
double sub_sig,
double main_sig,
double sup_sig,
arma::vec& g_vec
);
void special_algorithm_main();
#endif

23
src/timing.py Normal file
View File

@@ -0,0 +1,23 @@
import matplotlib.pyplot as plt
import numpy as np
def main():
x = []
gen_alg = []
spec_alg = []
with open(f"output/timing.txt", "r") as f:
lines = f.readlines()
for line in lines:
x_i, gen_i, spec_i = line.strip().split(",")
x.append(float(x_i))
gen_alg.append(float(gen_i))
spec_alg.append(float(spec_i))
plt.plot(x, gen_alg, label=f"general algorithm")
plt.plot(x, spec_alg, label=f"general algorithm")
plt.legend()
plt.savefig("../latex/images/problem10.pdf")
if __name__ == "__main__":
main()