Compare commits
9 Commits
6-solve-pr
...
coryab/imp
| Author | SHA1 | Date | |
|---|---|---|---|
| 5147389217 | |||
| 85e469f101 | |||
| 439bcefcb4 | |||
| 02302e1255 | |||
| ca774e434f | |||
| b4325ec185 | |||
| 46d3a78767 | |||
|
|
5cc45d0d02 | ||
|
|
31eb457614 |
BIN
latex/assignment_1.pdf
Normal file
BIN
latex/assignment_1.pdf
Normal file
Binary file not shown.
@@ -80,7 +80,7 @@
|
|||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
\title{Project 1} % self-explanatory
|
\title{Project 1} % self-explanatory
|
||||||
\author{Cory Balaton \& Janita Willumsen} % self-explanatory
|
\author{Cory Alexander Balaton \& Janita Ovidie Sandtrøen Willumsen} % self-explanatory
|
||||||
\date{\today} % self-explanatory
|
\date{\today} % self-explanatory
|
||||||
\noaffiliation % ignore this, but keep it.
|
\noaffiliation % ignore this, but keep it.
|
||||||
|
|
||||||
@@ -107,4 +107,6 @@
|
|||||||
|
|
||||||
\input{problems/problem9}
|
\input{problems/problem9}
|
||||||
|
|
||||||
|
\input{problems/problem10}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|||||||
@@ -40,5 +40,5 @@ Using the values that we found for $c_1$ and $c_2$, we get
|
|||||||
|
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
|
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
|
||||||
&= 1 - (1 - e^{-10}) - e^{-10x}
|
&= 1 - (1 - e^{-10})x - e^{-10x}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
|
|
||||||
\section*{Problem 5}
|
\section*{Problem 5}
|
||||||
|
|
||||||
\subsection*{a)}
|
\subsection*{a \& b)}
|
||||||
|
|
||||||
\subsection*{b)}
|
$n = m - 2$ since when solving for $\vec{v}$, we are finding the solutions for all the points that are in between the boundaries and not the boundaries themselves. $\vec{v}^*$ on the other hand includes the boundary points.
|
||||||
|
|||||||
@@ -17,6 +17,7 @@ Following Thomas algorithm for gaussian elimination, we first perform a forward
|
|||||||
\State $n \leftarrow$ length of $\vec{b}$
|
\State $n \leftarrow$ length of $\vec{b}$
|
||||||
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||||
\State $\hat{b}_{1} \leftarrow b_{1}$ \Comment{Handle first element in main diagonal outside loop}
|
\State $\hat{b}_{1} \leftarrow b_{1}$ \Comment{Handle first element in main diagonal outside loop}
|
||||||
|
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||||
\For{$i = 2, 3, ..., n$}
|
\For{$i = 2, 3, ..., n$}
|
||||||
\State $d \leftarrow \frac{a_{i}}{\hat{b}_{i-1}}$ \Comment{Calculating common expression}
|
\State $d \leftarrow \frac{a_{i}}{\hat{b}_{i-1}}$ \Comment{Calculating common expression}
|
||||||
\State $\hat{b}_{i} \leftarrow b_{i} - d \cdot c_{i-1}$
|
\State $\hat{b}_{i} \leftarrow b_{i} - d \cdot c_{i-1}$
|
||||||
@@ -43,4 +44,4 @@ Following Thomas algorithm for gaussian elimination, we first perform a forward
|
|||||||
Counting the number of FLOPs for the general algorithm by looking at one procedure at a time.
|
Counting the number of FLOPs for the general algorithm by looking at one procedure at a time.
|
||||||
For every iteration of i in forward sweep we have 1 division, 2 multiplications, and 2 subtractions, resulting in $5(n-1)$ FLOPs.
|
For every iteration of i in forward sweep we have 1 division, 2 multiplications, and 2 subtractions, resulting in $5(n-1)$ FLOPs.
|
||||||
For backward sweep we have 1 division, and for every iteration of i we have 1 subtraction, 1 multiplication, and 1 division, resulting in $3(n-1)+1$ FLOPs.
|
For backward sweep we have 1 division, and for every iteration of i we have 1 subtraction, 1 multiplication, and 1 division, resulting in $3(n-1)+1$ FLOPs.
|
||||||
Total FLOPs for the general algorithm is $8(n-1)+1$.
|
Total FLOPs for the general algorithm is $8(n-1)+1$.
|
||||||
|
|||||||
@@ -1,3 +1,55 @@
|
|||||||
\section*{Problem 9}
|
\section*{Problem 9}
|
||||||
|
|
||||||
% Show the algorithm, then calculate FLOPs, then link to relevant files
|
\subsection*{a)}
|
||||||
|
% Specialize algorithm
|
||||||
|
The special algorithm does not require the values of all $a_{i}$, $b_{i}$, $c_{i}$.
|
||||||
|
We find the values of $\hat{b}_{i}$ from simplifying the general case
|
||||||
|
\begin{align*}
|
||||||
|
\hat{b}_{i} &= b_{i} - \frac{a_{i} \cdot c_{i-1}}{\hat{b}_{i-1}} \\
|
||||||
|
\hat{b}_{i} &= 2 - \frac{1}{\hat{b}_{i-1}}
|
||||||
|
\end{align*}
|
||||||
|
Calculating the first values to see a pattern
|
||||||
|
\begin{align*}
|
||||||
|
\hat{b}_{1} &= 2 \\
|
||||||
|
\hat{b}_{2} &= 2 - \frac{1}{2} = \frac{3}{2} \\
|
||||||
|
\hat{b}_{3} &= 2 - \frac{1}{\frac{3}{2}} = \frac{4}{3} \\
|
||||||
|
\hat{b}_{4} &= 2 - \frac{1}{\frac{4}{3}} = \frac{5}{4} \\
|
||||||
|
\vdots & \\
|
||||||
|
\hat{b}_{i} &= \frac{i+1}{i} && \text{for $i = 1, 2, ..., n$}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{algorithm}[H]
|
||||||
|
\caption{Special algorithm}\label{algo:special}
|
||||||
|
\begin{algorithmic}
|
||||||
|
\Procedure{Forward sweep}{$\vec{b}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{b}$
|
||||||
|
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||||
|
\State $\hat{b}_{1} \leftarrow 2$ \Comment{Handle first element in main diagonal outside loop}
|
||||||
|
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||||
|
\For{$i = 2, 3, ..., n$}
|
||||||
|
\State $\hat{b}_{i} \leftarrow \frac{i+1}{i}$
|
||||||
|
\State $\hat{g}_{i} \leftarrow g_{i} + \frac{\hat{g}_{i-1}}{\hat{b}_{i-1}}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||||
|
\EndProcedure
|
||||||
|
|
||||||
|
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||||
|
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||||
|
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||||
|
\For{$i = n-1, n-2, ..., 1$}
|
||||||
|
\State $v_{i} \leftarrow \frac{\hat{g}_{i} + v_{i+1}}{\hat{b}_{i}}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{v}$
|
||||||
|
\EndProcedure
|
||||||
|
\end{algorithmic}
|
||||||
|
\end{algorithm}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection*{b)}
|
||||||
|
% Find FLOPs
|
||||||
|
For every iteration of i in forward sweep we have 2 divisions, and 2 additions, resulting in $4(n-1)$ FLOPs.
|
||||||
|
For backward sweep we have 1 division, and for every iteration of i we have 1 addition, and 1 division, resulting in $2(n-1)+1$ FLOPs.
|
||||||
|
Total FLOPs for the special algorithm is $6(n-1)+1$.
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user