Compare commits
40 Commits
5-solve-pr
...
coryab/imp
| Author | SHA1 | Date | |
|---|---|---|---|
| 5147389217 | |||
| 85e469f101 | |||
| 439bcefcb4 | |||
| 02302e1255 | |||
| ca774e434f | |||
| b4325ec185 | |||
| 46d3a78767 | |||
|
|
5cc45d0d02 | ||
|
|
31eb457614 | ||
|
|
4919f488d4 | ||
|
|
1ab0a1a490 | ||
|
|
fc492b5cbf | ||
|
|
8ebd561f0d | ||
| 3cfee4ebdc | |||
| 6e12f2b050 | |||
| c5c64da196 | |||
| c256d9b1da | |||
| 3d87b400d8 | |||
| d886d3761e | |||
| 4e633d13b5 | |||
| 400e8a29df | |||
| 996b99fca3 | |||
|
|
271e3dd944 | ||
|
|
c42426847d | ||
|
|
13cbbc4e0e | ||
| e407ce073e | |||
| f2f50ed3e4 | |||
| 91cc7583af | |||
| 6f5d71e1a4 | |||
| 92bb63abb5 | |||
|
|
afef7c9d1a | ||
|
|
dd16ffd822 | ||
| 9a6eaddf8e | |||
| 2e6b2cf6bc | |||
| 4cf07eb274 | |||
| aee15203df | |||
| b7195f8c17 | |||
| 70a3da3624 | |||
|
|
c26b788503 | ||
| 6cff40e678 |
8
.gitignore
vendored
8
.gitignore
vendored
@@ -36,3 +36,11 @@
|
|||||||
*.log
|
*.log
|
||||||
*.out
|
*.out
|
||||||
*.bib
|
*.bib
|
||||||
|
*.synctex.gz
|
||||||
|
*.bbl
|
||||||
|
|
||||||
|
# C++ specifics
|
||||||
|
src/*
|
||||||
|
!src/Makefile
|
||||||
|
!src/*.cpp
|
||||||
|
!src/*.py
|
||||||
|
|||||||
Binary file not shown.
@@ -1,7 +1,9 @@
|
|||||||
\documentclass[english,notitlepage]{revtex4-1} % defines the basic parameters of the document
|
\documentclass[english,notitlepage]{revtex4-1} % defines the basic parameters of the document
|
||||||
%For preview: skriv i terminal: latexmk -pdf -pvc filnavn
|
%For preview: skriv i terminal: latexmk -pdf -pvc filnavn
|
||||||
|
|
||||||
|
% Silence warning of revtex4-1
|
||||||
|
\usepackage{silence}
|
||||||
|
\WarningFilter{revtex4-1}{Repair the float}
|
||||||
|
|
||||||
% if you want a single-column, remove reprint
|
% if you want a single-column, remove reprint
|
||||||
|
|
||||||
@@ -13,7 +15,7 @@
|
|||||||
%% I recommend downloading TeXMaker, because it includes a large library of the most common packages.
|
%% I recommend downloading TeXMaker, because it includes a large library of the most common packages.
|
||||||
|
|
||||||
\usepackage{physics,amssymb} % mathematical symbols (physics imports amsmath)
|
\usepackage{physics,amssymb} % mathematical symbols (physics imports amsmath)
|
||||||
\include{amsmath}
|
\usepackage{amsmath}
|
||||||
\usepackage{graphicx} % include graphics such as plots
|
\usepackage{graphicx} % include graphics such as plots
|
||||||
\usepackage{xcolor} % set colors
|
\usepackage{xcolor} % set colors
|
||||||
\usepackage{hyperref} % automagic cross-referencing (this is GODLIKE)
|
\usepackage{hyperref} % automagic cross-referencing (this is GODLIKE)
|
||||||
@@ -72,10 +74,13 @@
|
|||||||
%%
|
%%
|
||||||
%% Don't ask me why, I don't know.
|
%% Don't ask me why, I don't know.
|
||||||
|
|
||||||
|
% custom stuff
|
||||||
|
\graphicspath{{./images/}}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
\title{Project 1} % self-explanatory
|
\title{Project 1} % self-explanatory
|
||||||
\author{Cory Balaton \& Janita Willumsen} % self-explanatory
|
\author{Cory Alexander Balaton \& Janita Ovidie Sandtrøen Willumsen} % self-explanatory
|
||||||
\date{\today} % self-explanatory
|
\date{\today} % self-explanatory
|
||||||
\noaffiliation % ignore this, but keep it.
|
\noaffiliation % ignore this, but keep it.
|
||||||
|
|
||||||
@@ -84,84 +89,24 @@
|
|||||||
|
|
||||||
\textit{https://github.uio.no/FYS3150-G2-2023/Project-1}
|
\textit{https://github.uio.no/FYS3150-G2-2023/Project-1}
|
||||||
|
|
||||||
\section*{Problem 1}
|
\input{problems/problem1}
|
||||||
|
|
||||||
% Do the double integral
|
\input{problems/problem2}
|
||||||
\begin{align*}
|
|
||||||
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
|
|
||||||
&= \int \int -100 e^{-10x} dx^2 \\
|
|
||||||
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
|
|
||||||
&= \int 10 e^{-10x} + c_1 dx \\
|
|
||||||
&= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\
|
|
||||||
&= -e^{-10x} + c_1 x + c_2
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
|
\input{problems/problem3}
|
||||||
|
|
||||||
\begin{align*}
|
\input{problems/problem4}
|
||||||
u(0) &= 0 \\
|
|
||||||
-e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\
|
|
||||||
-1 + c_2 &= 0 \\
|
|
||||||
c_2 &= 1
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
\begin{align*}
|
\input{problems/problem5}
|
||||||
u(1) &= 0 \\
|
|
||||||
-e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\
|
|
||||||
-e^{-10} + c_1 + c_2 &= 0 \\
|
|
||||||
c_1 &= e^{-10} - c_2\\
|
|
||||||
c_1 &= e^{-10} - 1\\
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
Using the values that we found for $c_1$ and $c_2$, we get
|
\input{problems/problem6}
|
||||||
|
|
||||||
\begin{align*}
|
\input{problems/problem7}
|
||||||
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
|
|
||||||
&= 1 - (1 - e^{-10}) - e^{-10x}
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
\section*{Problem 2}
|
\input{problems/problem8}
|
||||||
|
|
||||||
% Write which .cpp/.hpp/.py (using a link?) files are relevant for this and show the plot generated.
|
\input{problems/problem9}
|
||||||
|
|
||||||
\section*{Problem 3}
|
\input{problems/problem10}
|
||||||
|
|
||||||
% Show how it's derived and where we found the derivation.
|
|
||||||
|
|
||||||
\section*{Problem 4}
|
|
||||||
|
|
||||||
% Show that each iteration of the discretized version naturally creates a matrix equation.
|
|
||||||
|
|
||||||
\section*{Problem 5}
|
|
||||||
|
|
||||||
\subsection*{a)}
|
|
||||||
|
|
||||||
\subsection*{b)}
|
|
||||||
|
|
||||||
\section*{Problem 6}
|
|
||||||
|
|
||||||
\subsection*{a)}
|
|
||||||
|
|
||||||
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
|
||||||
|
|
||||||
\subsection*{b)}
|
|
||||||
|
|
||||||
% Figure it out
|
|
||||||
|
|
||||||
\section*{Problem 7}
|
|
||||||
|
|
||||||
% Link to relevant files on gh and possibly add some comments
|
|
||||||
|
|
||||||
\section*{Problem 8}
|
|
||||||
|
|
||||||
%link to relvant files and show plots
|
|
||||||
|
|
||||||
\section*{Problem 9}
|
|
||||||
|
|
||||||
% Show the algorithm, then calculate FLOPs, then link to relevant files
|
|
||||||
|
|
||||||
\section*{Problem 10}
|
|
||||||
|
|
||||||
% Time and show result, and link to relevant files
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|||||||
BIN
latex/images/analytical_solution.pdf
Normal file
BIN
latex/images/analytical_solution.pdf
Normal file
Binary file not shown.
44
latex/problems/problem1.tex
Normal file
44
latex/problems/problem1.tex
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
\section*{Problem 1}
|
||||||
|
|
||||||
|
First, we rearrange the equation.
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\
|
||||||
|
\frac{d^2u}{dx^2} &= -100 e^{-10x} \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Now we find $u(x)$.
|
||||||
|
|
||||||
|
% Do the double integral
|
||||||
|
\begin{align*}
|
||||||
|
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2 \\
|
||||||
|
&= \int \int -100 e^{-10x} dx^2 \\
|
||||||
|
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
|
||||||
|
&= \int 10 e^{-10x} + c_1 dx \\
|
||||||
|
&= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\
|
||||||
|
&= -e^{-10x} + c_1 x + c_2
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Using the boundary conditions, we can find $c_1$ and $c_2$
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
u(0) &= 0 \\
|
||||||
|
-e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\
|
||||||
|
-1 + c_2 &= 0 \\
|
||||||
|
c_2 &= 1
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
u(1) &= 0 \\
|
||||||
|
-e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\
|
||||||
|
-e^{-10} + c_1 + c_2 &= 0 \\
|
||||||
|
c_1 &= e^{-10} - c_2\\
|
||||||
|
c_1 &= e^{-10} - 1\\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Using the values that we found for $c_1$ and $c_2$, we get
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
|
||||||
|
&= 1 - (1 - e^{-10})x - e^{-10x}
|
||||||
|
\end{align*}
|
||||||
3
latex/problems/problem10.tex
Normal file
3
latex/problems/problem10.tex
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
\section*{Problem 10}
|
||||||
|
|
||||||
|
% Time and show result, and link to relevant files
|
||||||
11
latex/problems/problem2.tex
Normal file
11
latex/problems/problem2.tex
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
\section*{Problem 2}
|
||||||
|
|
||||||
|
The code for generating the points and plotting them can be found under.
|
||||||
|
|
||||||
|
Point generator code: https://github.uio.no/FYS3150-G2-203/Project-1/blob/main/src/analyticPlot.cpp
|
||||||
|
|
||||||
|
Plotting code: https://github.uio.no/FYS3150-G2-2023/Project-1/blob/main/src/analyticPlot.py
|
||||||
|
|
||||||
|
Here is the plot of the analytical solution for $u(x)$.
|
||||||
|
|
||||||
|
\includegraphics[scale=.5]{analytical_solution.pdf}
|
||||||
37
latex/problems/problem3.tex
Normal file
37
latex/problems/problem3.tex
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
|
||||||
|
\section*{Problem 3}
|
||||||
|
|
||||||
|
To derive the discretized version of the Poisson equation, we first need
|
||||||
|
the Taylor expansion for $u(x)$ around $x$ for $x + h$ and $x - h$.
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
u(x+h) &= u(x) + u'(x) h + \frac{1}{2} u''(x) h^2 + \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
u(x-h) &= u(x) - u'(x) h + \frac{1}{2} u''(x) h^2 - \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
If we add the equations above, we get this new equation:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
u(x+h) + u(x-h) &= 2 u(x) + u''(x) h^2 + \mathcal{O}(h^4) \\
|
||||||
|
u(x+h) - 2 u(x) + u(x-h) + \mathcal{O}(h^4) &= u''(x) h^2 \\
|
||||||
|
u''(x) &= \frac{u(x+h) - 2 u(x) + u(x-h)}{h^2} + \mathcal{O}(h^2) \\
|
||||||
|
u_i''(x) &= \frac{u_{i+1} - 2 u_i + u_{i-1}}{h^2} + \mathcal{O}(h^2) \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
We can then replace $\frac{d^2u}{dx^2}$ with the RHS (right-hand side) of the equation:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
- \frac{d^2u}{dx^2} &= f(x) \\
|
||||||
|
\frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} + \mathcal{O}(h^2) &= f_i \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
And lastly, we leave out $\mathcal{O}(h^2)$ and change $u_i$ to $v_i$ to
|
||||||
|
differentiate between the exact solution and the approximate solution,
|
||||||
|
and get the discretized version of the equation:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{ - v_{i+1} + 2 v_i - v_{i-1}}{h^2} &= 100 e^{-10x_i} \\
|
||||||
|
\end{align*}
|
||||||
44
latex/problems/problem4.tex
Normal file
44
latex/problems/problem4.tex
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
\section*{Problem 4}
|
||||||
|
|
||||||
|
% Show that each iteration of the discretized version naturally creates a matrix equation.
|
||||||
|
|
||||||
|
The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we solve for $\vec{v}$. This will result in a set of equations
|
||||||
|
\begin{align*}
|
||||||
|
- v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\
|
||||||
|
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||||
|
\vdots & \\
|
||||||
|
- v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
where $v_{i} = v(x_{i})$ and $f_{i} = f(x_{i})$. Rearranging the first and last equation, moving terms of known boundary values to the RHS
|
||||||
|
\begin{align*}
|
||||||
|
2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\
|
||||||
|
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||||
|
\vdots & \\
|
||||||
|
- v_{m-2} + 2 v_{m-1} &= h^{2} \cdot f_{m-1} + v_{m} \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
We now have a number of linear eqations, corresponding to the number of unknown values, which can be represented as an augmented matrix
|
||||||
|
\begin{align*}
|
||||||
|
\left[
|
||||||
|
\begin{matrix}
|
||||||
|
2v_{1} & -v_{2} & 0 & \dots & 0 \\
|
||||||
|
-v_{1} & 2v_{2} & -v_{3} & 0 & \\
|
||||||
|
0 & -v_{2} & 2v_{3} & -v_{4} & \\
|
||||||
|
\vdots & & & \ddots & \vdots \\
|
||||||
|
0 & & & -v_{m-2} & 2v_{m-1} \\
|
||||||
|
\end{matrix}
|
||||||
|
\left|
|
||||||
|
\,
|
||||||
|
\begin{matrix}
|
||||||
|
g_{1} \\
|
||||||
|
g_{2} \\
|
||||||
|
g_{2} \\
|
||||||
|
\vdots \\
|
||||||
|
g_{m-1} \\
|
||||||
|
\end{matrix}
|
||||||
|
\right.
|
||||||
|
\right]
|
||||||
|
\end{align*}
|
||||||
|
Since the boundary values are equal to $0$ the RHS can be renamed $g_{i} = h^{2} f_{i}$ for all $i$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$.
|
||||||
|
|
||||||
6
latex/problems/problem5.tex
Normal file
6
latex/problems/problem5.tex
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
|
||||||
|
\section*{Problem 5}
|
||||||
|
|
||||||
|
\subsection*{a \& b)}
|
||||||
|
|
||||||
|
$n = m - 2$ since when solving for $\vec{v}$, we are finding the solutions for all the points that are in between the boundaries and not the boundaries themselves. $\vec{v}^*$ on the other hand includes the boundary points.
|
||||||
47
latex/problems/problem6.tex
Normal file
47
latex/problems/problem6.tex
Normal file
@@ -0,0 +1,47 @@
|
|||||||
|
\section*{Problem 6}
|
||||||
|
|
||||||
|
\subsection*{a)}
|
||||||
|
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
||||||
|
Renaming the sub-, main-, and supdiagonal of matrix $\boldsymbol{A}$
|
||||||
|
\begin{align*}
|
||||||
|
\vec{a} &= [a_{2}, a_{3}, ..., a_{n-1}, a_{n}] \\
|
||||||
|
\vec{b} &= [b_{1}, b_{2}, b_{3}, ..., b_{n-1}, b_{n}] \\
|
||||||
|
\vec{c} &= [c_{1}, c_{2}, c_{3}, ..., c_{n-1}] \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Following Thomas algorithm for gaussian elimination, we first perform a forward sweep followed by a backward sweep to obtain $\vec{v}$
|
||||||
|
\begin{algorithm}[H]
|
||||||
|
\caption{General algorithm}\label{algo:general}
|
||||||
|
\begin{algorithmic}
|
||||||
|
\Procedure{Forward sweep}{$\vec{a}$, $\vec{b}$, $\vec{c}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{b}$
|
||||||
|
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||||
|
\State $\hat{b}_{1} \leftarrow b_{1}$ \Comment{Handle first element in main diagonal outside loop}
|
||||||
|
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||||
|
\For{$i = 2, 3, ..., n$}
|
||||||
|
\State $d \leftarrow \frac{a_{i}}{\hat{b}_{i-1}}$ \Comment{Calculating common expression}
|
||||||
|
\State $\hat{b}_{i} \leftarrow b_{i} - d \cdot c_{i-1}$
|
||||||
|
\State $\hat{g}_{i} \leftarrow g_{i} - d \cdot \hat{g}_{i-1}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||||
|
\EndProcedure
|
||||||
|
|
||||||
|
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||||
|
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||||
|
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||||
|
\For{$i = n-1, n-2, ..., 1$}
|
||||||
|
\State $v_{i} \leftarrow \frac{\hat{g}_{i} - c_{i} \cdot v_{i+1}}{\hat{b}_{i}}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{v}$
|
||||||
|
\EndProcedure
|
||||||
|
\end{algorithmic}
|
||||||
|
\end{algorithm}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection*{b)}
|
||||||
|
% Figure out FLOPs
|
||||||
|
Counting the number of FLOPs for the general algorithm by looking at one procedure at a time.
|
||||||
|
For every iteration of i in forward sweep we have 1 division, 2 multiplications, and 2 subtractions, resulting in $5(n-1)$ FLOPs.
|
||||||
|
For backward sweep we have 1 division, and for every iteration of i we have 1 subtraction, 1 multiplication, and 1 division, resulting in $3(n-1)+1$ FLOPs.
|
||||||
|
Total FLOPs for the general algorithm is $8(n-1)+1$.
|
||||||
3
latex/problems/problem7.tex
Normal file
3
latex/problems/problem7.tex
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
\section*{Problem 7}
|
||||||
|
|
||||||
|
% Link to relevant files on gh and possibly add some comments
|
||||||
3
latex/problems/problem8.tex
Normal file
3
latex/problems/problem8.tex
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
\section*{Problem 8}
|
||||||
|
|
||||||
|
%link to relvant files and show plots
|
||||||
55
latex/problems/problem9.tex
Normal file
55
latex/problems/problem9.tex
Normal file
@@ -0,0 +1,55 @@
|
|||||||
|
\section*{Problem 9}
|
||||||
|
|
||||||
|
\subsection*{a)}
|
||||||
|
% Specialize algorithm
|
||||||
|
The special algorithm does not require the values of all $a_{i}$, $b_{i}$, $c_{i}$.
|
||||||
|
We find the values of $\hat{b}_{i}$ from simplifying the general case
|
||||||
|
\begin{align*}
|
||||||
|
\hat{b}_{i} &= b_{i} - \frac{a_{i} \cdot c_{i-1}}{\hat{b}_{i-1}} \\
|
||||||
|
\hat{b}_{i} &= 2 - \frac{1}{\hat{b}_{i-1}}
|
||||||
|
\end{align*}
|
||||||
|
Calculating the first values to see a pattern
|
||||||
|
\begin{align*}
|
||||||
|
\hat{b}_{1} &= 2 \\
|
||||||
|
\hat{b}_{2} &= 2 - \frac{1}{2} = \frac{3}{2} \\
|
||||||
|
\hat{b}_{3} &= 2 - \frac{1}{\frac{3}{2}} = \frac{4}{3} \\
|
||||||
|
\hat{b}_{4} &= 2 - \frac{1}{\frac{4}{3}} = \frac{5}{4} \\
|
||||||
|
\vdots & \\
|
||||||
|
\hat{b}_{i} &= \frac{i+1}{i} && \text{for $i = 1, 2, ..., n$}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{algorithm}[H]
|
||||||
|
\caption{Special algorithm}\label{algo:special}
|
||||||
|
\begin{algorithmic}
|
||||||
|
\Procedure{Forward sweep}{$\vec{b}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{b}$
|
||||||
|
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||||
|
\State $\hat{b}_{1} \leftarrow 2$ \Comment{Handle first element in main diagonal outside loop}
|
||||||
|
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||||
|
\For{$i = 2, 3, ..., n$}
|
||||||
|
\State $\hat{b}_{i} \leftarrow \frac{i+1}{i}$
|
||||||
|
\State $\hat{g}_{i} \leftarrow g_{i} + \frac{\hat{g}_{i-1}}{\hat{b}_{i-1}}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||||
|
\EndProcedure
|
||||||
|
|
||||||
|
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||||
|
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||||
|
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||||
|
\For{$i = n-1, n-2, ..., 1$}
|
||||||
|
\State $v_{i} \leftarrow \frac{\hat{g}_{i} + v_{i+1}}{\hat{b}_{i}}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{v}$
|
||||||
|
\EndProcedure
|
||||||
|
\end{algorithmic}
|
||||||
|
\end{algorithm}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection*{b)}
|
||||||
|
% Find FLOPs
|
||||||
|
For every iteration of i in forward sweep we have 2 divisions, and 2 additions, resulting in $4(n-1)$ FLOPs.
|
||||||
|
For backward sweep we have 1 division, and for every iteration of i we have 1 addition, and 1 division, resulting in $2(n-1)+1$ FLOPs.
|
||||||
|
Total FLOPs for the special algorithm is $6(n-1)+1$.
|
||||||
|
|
||||||
17
src/Makefile
Normal file
17
src/Makefile
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
CC=g++
|
||||||
|
|
||||||
|
.PHONY: clean
|
||||||
|
|
||||||
|
all: simpleFile analyticPlot
|
||||||
|
|
||||||
|
simpleFile: simpleFile.o
|
||||||
|
$(CC) -o $@ $^
|
||||||
|
|
||||||
|
analyticPlot: analyticPlot.o
|
||||||
|
$(CC) -o $@ $^
|
||||||
|
|
||||||
|
%.o: %.cpp
|
||||||
|
$(CC) -c $< -o $@
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm *.o
|
||||||
55
src/analyticPlot.cpp
Normal file
55
src/analyticPlot.cpp
Normal file
@@ -0,0 +1,55 @@
|
|||||||
|
#include <iostream>
|
||||||
|
#include <cmath>
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
#include <numeric>
|
||||||
|
#include <fstream>
|
||||||
|
#include <iomanip>
|
||||||
|
|
||||||
|
#define RANGE 1000
|
||||||
|
#define FILENAME "analytical_solution.txt"
|
||||||
|
|
||||||
|
double u(double x);
|
||||||
|
void generate_range(std::vector<double> &vec, double start, double stop, int n);
|
||||||
|
void write_analytical_solution(std::string filename, int n);
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
write_analytical_solution(FILENAME, RANGE);
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
double u(double x) {
|
||||||
|
return 1 - (1 - exp(-10))*x - exp(-10*x);
|
||||||
|
};
|
||||||
|
|
||||||
|
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
|
||||||
|
double step = (stop - start) / n;
|
||||||
|
|
||||||
|
for (int i = 0; i <= vec.size(); i++) {
|
||||||
|
vec[i] = i * step;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_analytical_solution(std::string filename, int n) {
|
||||||
|
std::vector<double> x(n), y(n);
|
||||||
|
generate_range(x, 0.0, 1.0, n);
|
||||||
|
|
||||||
|
// Set up output file and strem
|
||||||
|
std::ofstream outfile;
|
||||||
|
outfile.open(filename);
|
||||||
|
|
||||||
|
// Parameters for formatting
|
||||||
|
int width = 12;
|
||||||
|
int prec = 4;
|
||||||
|
|
||||||
|
// Calculate u(x) and write to file
|
||||||
|
for (int i = 0; i <= x.size(); i++) {
|
||||||
|
y[i] = u(x[i]);
|
||||||
|
outfile << std::setw(width) << std::setprecision(prec) << std::scientific << x[i]
|
||||||
|
<< std::setw(width) << std::setprecision(prec) << std::scientific << y[i]
|
||||||
|
<< std::endl;
|
||||||
|
}
|
||||||
|
outfile.close();
|
||||||
|
}
|
||||||
|
|
||||||
19
src/analyticPlot.py
Normal file
19
src/analyticPlot.py
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
def main():
|
||||||
|
FILENAME = "analytical_solution.pdf"
|
||||||
|
x = []
|
||||||
|
v = []
|
||||||
|
|
||||||
|
with open('analytical_solution.txt') as f:
|
||||||
|
for line in f:
|
||||||
|
a, b = line.strip().split()
|
||||||
|
x.append(float(a))
|
||||||
|
v.append(float(b))
|
||||||
|
|
||||||
|
plt.plot(x, v)
|
||||||
|
plt.savefig(FILENAME)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
24
src/main.cpp
Normal file
24
src/main.cpp
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
#include "GeneralAlgorithm.hpp"
|
||||||
|
#include <armadillo>
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
double f(double x) {
|
||||||
|
return 100. * std::exp(-10.*x);
|
||||||
|
}
|
||||||
|
|
||||||
|
double a_sol(double x) {
|
||||||
|
return 1. - (1. - std::exp(-10)) * x - std::exp(-10*x);
|
||||||
|
}
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
arma::mat A = arma::eye(3,3);
|
||||||
|
|
||||||
|
GeneralAlgorithm ga(3, &A, f, a_sol, 0., 1.);
|
||||||
|
|
||||||
|
ga.solve();
|
||||||
|
std::cout << "Time: " << ga.time(5) << std::endl;
|
||||||
|
ga.error();
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
}
|
||||||
162
src/simpleFile.cpp
Normal file
162
src/simpleFile.cpp
Normal file
@@ -0,0 +1,162 @@
|
|||||||
|
#include <armadillo>
|
||||||
|
#include <cmath>
|
||||||
|
#include <ctime>
|
||||||
|
#include <fstream>
|
||||||
|
#include <iomanip>
|
||||||
|
#include <ios>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
#define TIMING_ITERATIONS 5
|
||||||
|
|
||||||
|
arma::vec* general_algorithm(
|
||||||
|
arma::vec* sub_diag,
|
||||||
|
arma::vec* main_diag,
|
||||||
|
arma::vec* sup_diag,
|
||||||
|
arma::vec* g_vec
|
||||||
|
)
|
||||||
|
{
|
||||||
|
int n = g_vec->n_elem;
|
||||||
|
double d;
|
||||||
|
|
||||||
|
for (int i = 1; i < n; i++) {
|
||||||
|
d = (*sub_diag)(i-1) / (*main_diag)(i-1);
|
||||||
|
(*main_diag)(i) -= d*(*sup_diag)(i-1);
|
||||||
|
(*g_vec)(i) -= d*(*g_vec)(i-1);
|
||||||
|
}
|
||||||
|
|
||||||
|
(*g_vec)(n-1) /= (*main_diag)(n-1);
|
||||||
|
|
||||||
|
for (int i = n-2; i >= 0; i--) {
|
||||||
|
(*g_vec)(i) = ((*g_vec)(i) - (*sup_diag)(i) * (*g_vec)(i+1)) / (*main_diag)(i);
|
||||||
|
}
|
||||||
|
return g_vec;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
arma::vec* special_algorithm(
|
||||||
|
double sub_sig,
|
||||||
|
double main_sig,
|
||||||
|
double sup_sig,
|
||||||
|
arma::vec* g_vec
|
||||||
|
)
|
||||||
|
{
|
||||||
|
int n = g_vec->n_elem;
|
||||||
|
arma::vec diag = arma::vec(n);
|
||||||
|
|
||||||
|
for (int i = 1; i < n; i++) {
|
||||||
|
// Calculate values for main diagonal based on indices
|
||||||
|
diag(i-1) = (double)(i+1) / i;
|
||||||
|
(*g_vec)(i) += (*g_vec)(i-1) / diag(i-1);
|
||||||
|
}
|
||||||
|
// The last element in main diagonal has value (i+1)/i = (n+1)/n
|
||||||
|
(*g_vec)(n-1) /= (double)(n+1) / (n);
|
||||||
|
|
||||||
|
for (int i = n-2; i >= 0; i--) {
|
||||||
|
(*g_vec)(i) = ((*g_vec)(i) + (*g_vec)(i+1))/ diag(i);
|
||||||
|
}
|
||||||
|
|
||||||
|
return g_vec;
|
||||||
|
}
|
||||||
|
|
||||||
|
void error(
|
||||||
|
std::string filename,
|
||||||
|
arma::vec* x_vec,
|
||||||
|
arma::vec* v_vec,
|
||||||
|
arma::vec* a_vec
|
||||||
|
)
|
||||||
|
{
|
||||||
|
std::ofstream ofile;
|
||||||
|
ofile.open(filename);
|
||||||
|
|
||||||
|
if (!ofile.is_open()) {
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i=0; i < a_vec->n_elem; i++) {
|
||||||
|
double sub = (*a_vec)(i) - (*v_vec)(i);
|
||||||
|
ofile << std::setprecision(8) << std::scientific << (*x_vec)(i)
|
||||||
|
<< std::setprecision(8) << std::scientific << std::log10(std::abs(sub))
|
||||||
|
<< std::setprecision(8) << std::scientific << std::log10(std::abs(sub/(*a_vec)(i)))
|
||||||
|
<< std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
ofile.close();
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
double f(double x) {
|
||||||
|
return 100*std::exp(-10*x);
|
||||||
|
}
|
||||||
|
|
||||||
|
void build_array(
|
||||||
|
int n_steps,
|
||||||
|
arma::vec* sub_diag,
|
||||||
|
arma::vec* main_diag,
|
||||||
|
arma::vec* sup_diag,
|
||||||
|
arma::vec* g_vec
|
||||||
|
)
|
||||||
|
{
|
||||||
|
sub_diag->resize(n_steps-2);
|
||||||
|
main_diag->resize(n_steps-1);
|
||||||
|
sup_diag->resize(n_steps-2);
|
||||||
|
|
||||||
|
sub_diag->fill(-1);
|
||||||
|
main_diag->fill(2);
|
||||||
|
sup_diag->fill(-1);
|
||||||
|
|
||||||
|
g_vec->resize(n_steps-1);
|
||||||
|
|
||||||
|
double step_size = 1./ (double) n_steps;
|
||||||
|
for (int i=0; i < n_steps-1; i++) {
|
||||||
|
(*g_vec)(i) = f((i+1)*step_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void timing() {
|
||||||
|
arma::vec sub_diag, main_diag, sup_diag, g_vec;
|
||||||
|
int n_steps;
|
||||||
|
|
||||||
|
std::ofstream ofile;
|
||||||
|
ofile.open("timing.txt");
|
||||||
|
|
||||||
|
// Timing
|
||||||
|
for (int i=1; i <= 8; i++) {
|
||||||
|
n_steps = std::pow(10, i);
|
||||||
|
clock_t g_1, g_2, s_1, s_2;
|
||||||
|
double g_res = 0, s_res = 0;
|
||||||
|
|
||||||
|
for (int j=0; j < TIMING_ITERATIONS; j++) {
|
||||||
|
build_array(n_steps, &sub_diag, &main_diag, &sup_diag, &g_vec);
|
||||||
|
|
||||||
|
g_1 = clock();
|
||||||
|
|
||||||
|
general_algorithm(&sub_diag, &main_diag, &sup_diag, &g_vec);
|
||||||
|
|
||||||
|
g_2 = clock();
|
||||||
|
|
||||||
|
g_res += (double) (g_2 - g_1) / CLOCKS_PER_SEC;
|
||||||
|
build_array(n_steps, &sub_diag, &main_diag, &sup_diag, &g_vec);
|
||||||
|
|
||||||
|
s_1 = clock();
|
||||||
|
|
||||||
|
special_algorithm(-1., 2., -1., &g_vec);
|
||||||
|
|
||||||
|
s_2 = clock();
|
||||||
|
|
||||||
|
s_res += (double) (s_2 - s_1) / CLOCKS_PER_SEC;
|
||||||
|
|
||||||
|
}
|
||||||
|
ofile
|
||||||
|
<< n_steps << ","
|
||||||
|
<< g_res / (double) TIMING_ITERATIONS << ","
|
||||||
|
<< s_res / (double) TIMING_ITERATIONS << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
ofile.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
timing();
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user