Finish first draft of introduction and method section.
This commit is contained in:
389
latex/draft.tex
389
latex/draft.tex
@@ -2,103 +2,48 @@
|
||||
|
||||
\begin{document}
|
||||
\section{Theoretical background}\label{sec:theory}
|
||||
Scientists have made use of light in devices leading to...
|
||||
|
||||
The use of light have facilitated many discoveries through history. The invention
|
||||
of the compound microscope, which used lenses to focus light, led to the first
|
||||
observation of animal cells. And the telescope, which led to a greater understanding
|
||||
of the universe.
|
||||
|
||||
The nature of light has long been a subject of interest and discussion. Around year
|
||||
1600 the first microscope was invented, which made use of light through lenses.
|
||||
The observation made using the microscope led to a greater understanding of the
|
||||
world at a microscopic scale. However, the study of light itself have led to (something).
|
||||
|
||||
Through the 1600s, the view shifted from particle to wave.
|
||||
% Introduction?
|
||||
The nature of light has long been a subject of discussion, from the 1500s
|
||||
The nature of light has long been a subject of interest and discussion, from the 1500s
|
||||
and the invention of microscopes, through the 1700s where both a particle theory
|
||||
and a wave theory. In the late 1600s, Christiaan Huygens proposed the wave theory of light,
|
||||
which was challenged by Isaac Newton's particle theory. The particle theory made
|
||||
was the leading theory in the beginning of 1800s, when Thomas Young demonstrated
|
||||
the interference of light, through his double-slit experiment, the wave theory found
|
||||
which was challenged by Isaac Newton's particle theory. The particle theory was
|
||||
the leading theory in the beginning of 1800s, when Thomas Young demonstrated
|
||||
the interference of light, through his double-slit experiment. The wave theory found
|
||||
new hold.
|
||||
|
||||
In the 1800s, the study of ideal black bodies done by Gustav R. Kirchhoff, lead to a
|
||||
better understanding of heat radiation. Wilhelm Wien started working on determining the
|
||||
spectral energy distribution, and Wien's law. The law did make sense for high frequencies,
|
||||
however, there were inconsistencies when frequency were lower than a certain value.
|
||||
however, as there were inconsistencies when the frequency were lower than a threshold value.
|
||||
Wiens law led to an exponential curve, which disagree with the law of conservation.
|
||||
|
||||
Max Planck guessed a result which led to Plancks radiation law, which he later derived
|
||||
using Boltzmanns statistical interpretation of the second law of thermodunamics.
|
||||
Plancks findings gave rise to Einsteins quantum hypothesis, and later the wave-particle
|
||||
Max Planck guessed a solution to the problem, which led to Planck's radiation law.
|
||||
He later derived the radiation law using Boltzmanns statistical interpretation of
|
||||
the second law of thermodynamics.
|
||||
Plancks findings gave rise to the quantum hypothesis, and later Einsteins wave-particle
|
||||
duality \cite{britannica:1998:planck}.
|
||||
|
||||
For small atoms classical mechanics are not able to explain the position of a particle,
|
||||
For small atoms classical mechanics are not sufficient in describing the position of a particle,
|
||||
and Heisenberg uncertainty priciple suggest that the particles have a wavelike behavior.
|
||||
The wave-particle duality was later proposed to apply to particles by Louis de Broglie,
|
||||
which inspired Erwin Schrödinger who proposed a wave function to describe the quantum
|
||||
state of a particle, resulting in the wave equation.
|
||||
|
||||
% Methods?
|
||||
% Schrödinger
|
||||
The Schrödinger equation has a general form
|
||||
\begin{align}
|
||||
i \hbar \frac{\partial}{\partial t} | \Psi \rangle &= \hat{H} | \Psi \rangle \ ,
|
||||
\label{eq:schrodinger_general}
|
||||
\end{align}
|
||||
where $i$ is the imaginary number, and $\hbar$ is Plancks constant. Here $| \Psi \rangle$
|
||||
is the quantum state and $\hat{H}$ is a Hamiltonian operator.
|
||||
For two-dimensional position space, the quantum state can be expressed using the
|
||||
time-dependent complex-valued wave function $\Psi (x, y, t)$. The square modulus of the wave function $|\psi|^{2}$, predicts probability of finding the particle at position $(x, y)$ at time t.
|
||||
% Segue to Born
|
||||
The modulus of the wave function, is related to the probability density function
|
||||
\begin{align}
|
||||
p(x, y \ | \ t) &= |\Psi(x, y, t)|^{2} = \Psi^{*}(x, y, t) \Psi(x, y, t)
|
||||
\label{eq:born_rule}
|
||||
\end{align}
|
||||
using the Born rule, where $^{*}$ denotes the complex conjugated wave function.
|
||||
When the potential is time-independent, the Schrödinger equation can be expressed as
|
||||
\begin{align*}
|
||||
i \hbar \frac{\partial}{\partial t} \Psi (x, y, t) &= - \frac{\hbar^{2}}{2m} \bigg( \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} \bigg) \Psi (x, y, t) \\
|
||||
& \quad + V(x, y, t) \Psi (x, y, t) \numberthis \ .
|
||||
\label{eq:schrodinger_special}
|
||||
\end{align*}
|
||||
When we scale Schrödinger equation by the dimensionful variables, we are left with
|
||||
a wave function $u$, potential $v$ and the dimensionless equation
|
||||
\begin{align}
|
||||
i \frac{\partial u}{\partial t} &= - \frac{\partial^{2} u}{\partial x^{2}} - \frac{\partial^{2} u}{\partial y^{2}} + v(x, y) u \ .
|
||||
\label{eq:schrodinger_dimensionless}
|
||||
\end{align}
|
||||
|
||||
% Crank-Nicolson
|
||||
To evaluate the position of a single particle, we have to consider partial differential
|
||||
equations (PDE). To solve these numerically, we have to discretize Equation \eqref{eq:schrodinger_dimensionless}.
|
||||
We use the Crank-Nicolson method (CN), which combines the forward and backward finite
|
||||
difference method. %
|
||||
% Include the general $\theta$-method
|
||||
Using the $\theta$-rule \footnote{For $\theta \in [0, 1]$ we can derive Forward Euler using $\theta = 1$, Backward Euler using $\theta = 0$, and $\theta = 1/2$ gives Crank-Nicolson}
|
||||
with $\theta = 1/2$, CN can be written as
|
||||
\begin{align}
|
||||
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} &= \frac{1}{2} \bigg[ F_{\ivec, \jvec}^{n+1} + F_{\ivec, \jvec}^{n} \bigg] \ .
|
||||
\label{eq:crank_nicolson}
|
||||
\end{align}
|
||||
To simplify notation and avoid confusion of indices with the imaginary number $i$,
|
||||
we have used the notation $\ivec, \jvec$ in subscript to indicate the commonly named indices $i, j$
|
||||
in x- and y-direction. In addition, the superscript $n, n+1$ indicate position in time.
|
||||
We use CN to derive the discretized Schrödinger equation
|
||||
\begin{align*}
|
||||
& u_{\ivec, \jvec}^{n+1} - \frac{i \Delta t}{2 \Delta x^{2}} \big[ u_{\ivec+1, \jvec}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec-1, \jvec}^{n+1} \big] \\
|
||||
& - \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec, \jvec-1}^{n+1} \big] + \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n+1} \\
|
||||
&= u_{\ivec, \jvec}^{n} + \frac{i \Delta t}{2 \Delta x^{2}} \big[ u_{\ivec+1, \jvec}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec-1, \jvec}^{n} \big] \\
|
||||
& \quad + \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n} \big] - \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n} \numberthis \ .
|
||||
\label{eq:schrodinger_discretized}
|
||||
\end{align*}
|
||||
The full derivation of both Equation \eqref{eq:crank_nicolson} and Equation \eqref{eq:schrodinger_discretized}
|
||||
can be found in Appendix \ref{ap:crank_nicolson}
|
||||
|
||||
First, we Taylor
|
||||
expand the wave equation $u$ around (position and time).
|
||||
|
||||
|
||||
\section{Notes}\label{sec:notes}
|
||||
\subsection*{Introduction - draft 2}
|
||||
In classical mechanics we study the kinematics and dynamics of physical objects,
|
||||
ignoring its intrinsic properties for simplicity. It allows us to describe the
|
||||
forces acting on an object as well as the motion of the object. We can describe
|
||||
a planets orbital movement \cite{britannica:2023:kepler}, calculate the ... necessary
|
||||
to launch satellites into orbit, or simply figure out where a ball is going to land
|
||||
when you throw it... However, when want to study an object at a microscopic level,
|
||||
e.g. a single atom, classical mechanics falls short.
|
||||
|
||||
% Double-slit experiment
|
||||
Thomas Young first performed the double-slit experiment in 1801, to demonstrate
|
||||
the principle of interference of light \cite{britannica:2023:young}, postulating
|
||||
light as waves. In the study of blackbodies, scientists were not able to describe
|
||||
@@ -107,6 +52,292 @@ contradicted the principle of conservation of energy \cite{britannica:1998:planc
|
||||
Max Planck assumed that the radiated energy consist of discrete values, or quanta,
|
||||
to describe the peak in radiated energy.
|
||||
|
||||
% Reference: https://tex.stackexchange.com/questions/469109/how-to-change-arrowheads-to-lie-on-a-plane
|
||||
\begin{tikzpicture}[scale=1.25,every node/.append style={transform shape}]
|
||||
\foreach \x in {-1,-0.75,...,0} {
|
||||
\draw (\x,-1) -- (\x,1);
|
||||
}
|
||||
\draw[fill=black!10] (0.5,-2,-1) -- (0.5,-2,1) -- (0.5,2,1) -- (0.5,2,-1) -- (0.5,-2,-1);
|
||||
\fill (0.5,0,0) circle (0.05);
|
||||
\foreach \r in {0.25,0.5,...,1.75} {
|
||||
\draw (0.5,0) ++(-60:\r) arc (-60:60:\r);
|
||||
}
|
||||
\draw[fill=black!10] (2,-2,-1) -- (2,-2,1) -- (2,2,1) -- (2,2,-1) -- (2,-2,-1);
|
||||
%\fill (2,0.5) circle (0.05) (2,-0.5) circle (0.05);
|
||||
\foreach \r in {0.25,0.5,...,2} {
|
||||
\draw (2,0.5) ++(-60:\r) arc (-60:60:\r);
|
||||
\draw (2,-0.5) ++(-60:\r) arc (-60:60:\r);
|
||||
}
|
||||
\draw[fill=black!10] (4,-2,-1) -- (4,-2,1) -- (4,2,1) -- (4,2,-1) -- (4,-2,-1);
|
||||
% LABELLING
|
||||
\begin{scope}[canvas is yz plane at x=2,rotate=-90]
|
||||
\node[circle,inner sep=0.5mm,fill,label=above:{S${}_1$}] at (0,0.5){};
|
||||
\node[circle,inner sep=0.5mm,fill,label=below:{S${}_2$}] at (0,-0.5) {};
|
||||
\draw[dash pattern=on 1.5pt off 1pt,thin] (-0.5,0.5) -- (0,0.5)
|
||||
(-0.5,-0.5) -- (0,-0.5);
|
||||
\pgflowlevelsynccm
|
||||
\draw[|<->|] (-0.5,0.5) -- (-0.5,-0.5) node[midway,right=-0.1cm] {d};
|
||||
\end{scope}
|
||||
\begin{scope}[canvas is yz plane at x=0.5,rotate=-90]
|
||||
\node[below left=-0.1cm] at (0,0) {S${}_0$};
|
||||
\end{scope}
|
||||
\begin{scope}[xshift=4cm,yshift=2cm,rotate=-90,canvas is xy plane at z=0]
|
||||
\fill[white] (0,0) rectangle (4,4);
|
||||
\begin{axis}[
|
||||
width=5.575cm,
|
||||
xmin=-0.5,
|
||||
xmax=0.5,
|
||||
ticks=none
|
||||
]
|
||||
\addplot [samples=1000,blue
|
||||
]
|
||||
{(cos(deg(5*pi*sin(deg(x)))))^(2)*((sin(deg(4*pi*sin(deg(x)))))/(4*pi*sin(deg(x))))^(2)};
|
||||
\end{axis}
|
||||
\end{scope}
|
||||
\draw[thin,densely dashed,blue] (2,0) -- (6.9,0);
|
||||
\draw[thin,densely dashed,blue] (2,0) -- +(15:2.5);
|
||||
\draw[thin,densely dashed,blue] (2,0) -- +(-15:2.5);
|
||||
\draw[thin,densely dashed,blue] (2,0) -- +(32:2.5);
|
||||
\draw[thin,densely dashed,blue] (2,0) -- +(-32:2.5);
|
||||
\end{tikzpicture}
|
||||
|
||||
% Author: Izaak Neutelings (June 2020)
|
||||
% Inspiration:
|
||||
% https://courses.physics.ucsd.edu/2011/Summer/session1/physics2c/diffraction.pdf
|
||||
% https://tex.stackexchange.com/questions/201830/periodic-shading-in-tikz
|
||||
% \begin{tikzpicture}[
|
||||
% nodal/.style={mylightgreen,dashed,very thin},
|
||||
% declare function={
|
||||
% %xnode(\n,\dn,\lam,\f) = sqrt( (\n^2+(\n+\dn)^2)*\lambd^2/2 - (\n^2-(\n+\dn)^2)^2*\lambd^4/(4*\a^2) - \a^2/4 );
|
||||
% xnode(\n,\dn,\lam,\f) = \lam/\f*sqrt( \n^2*(\f^2-\dn^2)+\n*\dn*(\f^2-\dn^2)+\dn^2*\f^2/2-(\f^4+\dn^4)/4 );
|
||||
% ynode(\n,\dn,\lam,\a) = (2*\n*\dn+\dn^2)*\lam/(2*\f);
|
||||
% intensity(\y,\lam,\a,\L) = cos(180*\a*\y/(2*\lam*sqrt(\L*\L+\y*\y)))^2;
|
||||
% }
|
||||
% ]
|
||||
|
||||
% \def\L{3.8} % distance between walls
|
||||
% \def\H{5.4} % total wall height
|
||||
% \def\h{2.8} % plane wave height
|
||||
% \def\t{0.15} % wall thickness
|
||||
% \def\a{1.15} % slit distance
|
||||
% \def\d{0.20} % slit size
|
||||
% \def\N{21} % number of waves
|
||||
% \def\lambd{0.20} % wavelength
|
||||
% \def\R{\N*\lambd} % wave radius
|
||||
% \def\Nlines{3} % number of nodal lines
|
||||
% \def\A{1.6} % amplitude
|
||||
% %\def\r{0.06} % point source radius
|
||||
% %\def\nmax{10}
|
||||
% \def\nsamples{100}
|
||||
% \def\ang{62}
|
||||
|
||||
% \begin{scope}
|
||||
% \clip (-\t/2,-\H/2) rectangle (\L,\H/2);
|
||||
% %\clip (-\t/2,0.7*\a) -- (0.6*\L,\H/2) -- (\L,\H/2) --
|
||||
% % (\L,-\H/2) -- (0.6*\L,-\H/2) -- (-\t/2,-0.7*\a) -- cycle;
|
||||
|
||||
% % NODAL LINES
|
||||
% \draw[nodal]
|
||||
% (0.08*\N*\lambd,0) -- (1.06*\R,0);
|
||||
% \coordinate (NP0) at (\L,0); % to avoid "Dimension too large error"
|
||||
% \foreach \dn [evaluate={
|
||||
% \f=\a/\lambd;
|
||||
% \nmin=2.5+0.2*\dn; %0.501*(-\dn+\f)
|
||||
% \nmax=10; %(NP0)
|
||||
% \c=int(\dn<\f);
|
||||
% \y=\L/sqrt((\a/(\lambd*\dn))^2-1);
|
||||
% }] in {1,...,\Nlines}{
|
||||
% \coordinate (NP+\dn) at (\L,\y); % to avoid "Dimension too large error"
|
||||
% \coordinate (NP-\dn) at (\L,-\y); % to avoid "Dimension too large error"
|
||||
% \ifnum\c=1
|
||||
% \draw[nodal,variable=\n,samples=\nsamples,smooth]
|
||||
% plot[domain=\nmin:\nmax] ({xnode(\n,\dn,\lambd,\f)},{ynode(\n,\dn,\lambd,\f)})
|
||||
% -- (NP+\dn);
|
||||
% \draw[nodal,variable=\n,samples=\nsamples,smooth]
|
||||
% plot[domain=\nmin:\nmax] ({xnode(\n,\dn,\lambd,\f)},{-ynode(\n,\dn,\lambd,\f)})
|
||||
% -- (NP-\dn);
|
||||
% \fi
|
||||
% }
|
||||
|
||||
% % WAVES
|
||||
% \foreach \i [evaluate={\R=\i*\lambd;}] in {1,...,\N}{
|
||||
% \ifodd\i
|
||||
% \draw[myblue,line width=0.8] (0,\a/2)++(\ang:\R) arc (\ang:-\ang:\R);
|
||||
% \draw[myred,line width=0.8] (0,-\a/2)++(\ang:\R) arc (\ang:-\ang:\R);
|
||||
% \else
|
||||
% \draw[myblue!80,line width=0.1] (0,\a/2)++(\ang:\R) arc (\ang:-\ang:\R);
|
||||
% \draw[myred!80,line width=0.1] (0,-\a/2)++(\ang:\R) arc (\ang:-\ang:\R);
|
||||
% \fi
|
||||
% }
|
||||
% \end{scope}
|
||||
|
||||
% % PLANE WAVES
|
||||
% \foreach \i [evaluate={\x=-\i*\lambd;}] in {0,...,5}{
|
||||
% \ifodd\i
|
||||
% \draw[myblue,line width=0.8] (\x,-\h/2) -- (\x,\h/2);
|
||||
% \else
|
||||
% \draw[myblue,line width=0.1] (\x,-\h/2) -- (\x,\h/2);
|
||||
% \fi
|
||||
% }
|
||||
|
||||
% % WALL
|
||||
% \fill[wall]
|
||||
% (\t/2,\a/2-\d/2) rectangle (-\t/2,-\a/2+\d/2)
|
||||
% (\t/2,\a/2+\d/2) rectangle (-\t/2,\H/2)
|
||||
% (\t/2,-\a/2-\d/2) rectangle (-\t/2,-\H/2)
|
||||
% (\L,-\H/2) rectangle (\L+\t,\H/2);
|
||||
|
||||
% % SHADES
|
||||
% \begin{scope}[shift={(1.08*\L,0)}]
|
||||
% \def\yz{\L/sqrt((\a/\lambd)^2-1)} % m = +- 1/2
|
||||
% \def\yZ{\L/sqrt((\a/\lambd/2)^2-1)} % m = +- 1
|
||||
% \clip (0,-\H/2) rectangle (1.1*\A,\H/2);
|
||||
% \fill[white] (0,-\H/2) rectangle++ (\A,\H); % to fill seams
|
||||
% \foreach \i [evaluate={\n=0.5*\i;\yn=\L/sqrt((\a/(2*\lambd*\n))^2-1);
|
||||
% }] in {1,...,\Nlines}{
|
||||
% \ifodd\i % if even
|
||||
% \fill[myshadow] (0,{-\yn-0.1}) rectangle++ (\A,0.2); % to fill seams
|
||||
% \fill[myshadow] (0,{ \yn-0.1}) rectangle++ (\A,0.2); % to fill seams
|
||||
% \fi
|
||||
% }
|
||||
% \path[left color=myshadow,right color=myshadow,middle color=white,shading angle={180}]
|
||||
% (0,{-\yz}) rectangle (\A,{\yz});
|
||||
% \foreach \i [evaluate={
|
||||
% \n=0.5*\i;
|
||||
% \m=0.5*(\i+1);
|
||||
% \yn=\L/sqrt((\a/(2*\lambd*\n))^2-1);
|
||||
% \ym=\L/sqrt((\a/(2*\lambd*\m))^2-1);
|
||||
% \dang=mod(\i,2)*180;
|
||||
% }] in {1,...,\Nlines}{
|
||||
% \path[left color=myshadow,right color=white,shading angle={\dang}]
|
||||
% (0,\yn) rectangle (\A,\ym);
|
||||
% \path[left color=myshadow,right color=white,shading angle={180+\dang}]
|
||||
% (0,-\yn) rectangle (\A,-\ym);
|
||||
% }
|
||||
% \end{scope}
|
||||
|
||||
% % INTENSITY
|
||||
% \begin{scope}[shift={(1.1*\L+1.1*\A,0)}]
|
||||
% \draw[->,thick] (-0.08*\A,0) -- (1.3*\A,0) node[right=-2] {$\expval{I}$}; % I axis
|
||||
% \draw[->,thick] (0,-0.52*\H) -- (0,0.54*\H) node[right] {$y$}; % y axis
|
||||
% \draw[nodal] (NP0) --++ (0.15*\L+2.1*\A,0); % green nodal lines
|
||||
% \foreach \i [evaluate={\y=\L/sqrt((\a/(\lambd*\i))^2-1)}] in {1,...,\Nlines}{ % green nodal lines
|
||||
% \draw[nodal] (NP+\i) --++ ({0.15*\L+1.1*\A+\A*intensity(\y,\lambd,\a,\L)},0);
|
||||
% \draw[nodal] (NP-\i) --++ ({0.15*\L+1.1*\A+\A*intensity(\y,\lambd,\a,\L)},0);
|
||||
% }
|
||||
% \draw[myred,thick,variable=\y,samples=\nsamples,smooth,domain=-\H/2:\H/2]
|
||||
% plot({\A*intensity(\y,\lambd,\a,\L)},\y);
|
||||
% \foreach \i [evaluate={ % ticks
|
||||
% \modd=\i; %int(\i);
|
||||
% \meven=int(\i-1);
|
||||
% \y=\L/sqrt((\a/(\lambd*\i))^2-1);
|
||||
% }] in {1,...,\Nlines}{
|
||||
% \ifodd\i
|
||||
% \tick{0,-\y}{180} node[right=0,scale=0.85] {$m=-\frac{\modd}{2}$};
|
||||
% \tick{0,\y}{180} node[right=0,scale=0.85] {$m=+\frac{\modd}{2}$};
|
||||
% \else
|
||||
% \tick{0,-\y}{180} node[right=0,scale=0.85] {$m=-\meven$};
|
||||
% \tick{0,\y}{180} node[right=0,scale=0.85] {$m=+\meven$};
|
||||
% \fi
|
||||
% }
|
||||
% \end{scope}
|
||||
|
||||
% \end{tikzpicture}
|
||||
|
||||
% Schrödinger
|
||||
% -----------
|
||||
% The wave equation, Schrödinger equation has a general form
|
||||
% \begin{align}
|
||||
% i \hbar \frac{\partial}{\partial t} | \Psi \rangle &= \hat{H} | \Psi \rangle \ ,
|
||||
% \label{eq:schrodinger_general}
|
||||
% \end{align}
|
||||
% where $i$ is the imaginary number, and $\hbar$ is Plancks constant. Here $| \Psi \rangle$
|
||||
% is the quantum state and $\hat{H}$ is a Hamiltonian operator. % which represent the energy of the system
|
||||
% For two-dimensional position space, the quantum state can be expressed using the
|
||||
% time-dependent complex-valued wave function $\Psi (x, y, t)$. The square modulus of the wave function $|\psi|^{2}$, predicts probability of finding the particle at position $(x, y)$ at time t.
|
||||
% % Segue to Born
|
||||
% The modulus of the wave function, is related to the probability density function
|
||||
% \begin{align}
|
||||
% p(x, y \ | \ t) &= |\Psi(x, y, t)|^{2} = \Psi^{*}(x, y, t) \Psi(x, y, t)
|
||||
% \label{eq:born_rule}
|
||||
% \end{align}
|
||||
% using the Born rule, where $^{*}$ denotes the complex conjugated wave function.
|
||||
% When the potential is time-independent, the Schrödinger equation can be expressed as
|
||||
% \begin{align*}
|
||||
% i \hbar \frac{\partial}{\partial t} \Psi (x, y, t) &= - \frac{\hbar^{2}}{2m} \bigg( \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} \bigg) \Psi (x, y, t) \\
|
||||
% & \quad + V(x, y, t) \Psi (x, y, t) \numberthis \ .
|
||||
% \label{eq:schrodinger_special}
|
||||
% \end{align*}
|
||||
% When we scale Schrödinger equation by the dimensionful variables, we are left with
|
||||
% a wave function $u$, potential $v$ and the dimensionless equation
|
||||
% \begin{align}
|
||||
% i \frac{\partial u}{\partial t} &= - \frac{\partial^{2} u}{\partial x^{2}} - \frac{\partial^{2} u}{\partial y^{2}} + v(x, y) u \ .
|
||||
% \label{eq:schrodinger_dimensionless}
|
||||
% \end{align}
|
||||
|
||||
% Crank-Nicolson
|
||||
% --------------
|
||||
% To evaluate the position of a single particle, we have to consider partial differential
|
||||
% equations (PDE). To solve these numerically, we have to discretize Equation \eqref{eq:schrodinger_dimensionless}.
|
||||
% We use the Crank-Nicolson method (CN), which combines the forward and backward finite
|
||||
% difference method.
|
||||
% Include the general $\theta$-method
|
||||
% Using the $\theta$-rule \footnote{For $\theta \in [0, 1]$ we can derive Forward Euler using $\theta = 1$, Backward Euler using $\theta = 0$, and $\theta = 1/2$ gives Crank-Nicolson}
|
||||
% with $\theta = 1/2$, CN can be written as
|
||||
% \begin{align}
|
||||
% \frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} &= \frac{1}{2} \bigg[ F_{\ivec, \jvec}^{n+1} + F_{\ivec, \jvec}^{n} \bigg] \ .
|
||||
% \label{eq:crank_nicolson}
|
||||
% \end{align}
|
||||
% To simplify notation and avoid confusion of indices with the imaginary number $i$,
|
||||
% we have used the notation $\ivec, \jvec$ in subscript to indicate the commonly named indices $i, j$
|
||||
% in x- and y-direction. In addition, the superscript $n, n+1$ indicate position in time.
|
||||
% We use CN to derive the discretized Schrödinger equation
|
||||
% \begin{align*}
|
||||
% & u_{\ivec, \jvec}^{n+1} - \frac{i \Delta t}{2 \Delta x^{2}} \big[ u_{\ivec+1, \jvec}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec-1, \jvec}^{n+1} \big] \\
|
||||
% & - \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec, \jvec-1}^{n+1} \big] + \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n+1} \\
|
||||
% &= u_{\ivec, \jvec}^{n} + \frac{i \Delta t}{2 \Delta x^{2}} \big[ u_{\ivec+1, \jvec}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec-1, \jvec}^{n} \big] \\
|
||||
% & \quad + \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n} \big] - \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n} \numberthis \ .
|
||||
% \label{eq:schrodinger_discretized}
|
||||
% \end{align*}
|
||||
% The full derivation of both Equation \eqref{eq:crank_nicolson} and Equation \eqref{eq:schrodinger_discretized}
|
||||
% can be found in Appendix \ref{ap:crank_nicolson}.
|
||||
|
||||
% Implementation
|
||||
The implementation of CN is simplified usein Dirichlet boundary conditions, which
|
||||
can be found in Table \ref{tab:dirichlet}. In addition, we use Gaussian wave packets
|
||||
for the initial wave function
|
||||
\begin{align}
|
||||
u(x, y, t=0) = e^{- \frac{(x-x_{c})^{2}}{2 \sigma_{x}^{2}} - \frac{(y-y_{c})^{2}}{2 \sigma_{y}^{2}} + ip_{x}x + ip_{y}y}
|
||||
\end{align}
|
||||
\begin{algorithm}[H]
|
||||
\caption{Crank-Nicolson scheme}
|
||||
\label{algo:cn_scheme}
|
||||
\begin{algorithmic}
|
||||
\Procedure{Crank-Nicolson}{$args$}
|
||||
\State Insert pseudo code $var \leftarrow \text{ some text}$
|
||||
\EndProcedure
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
|
||||
|
||||
\section{Notes}\label{sec:notes}
|
||||
\subsection*{Introduction - draft 2}
|
||||
In classical mechanics we study the kinematics and dynamics of physical objects,
|
||||
ignoring their intrinsic properties for simplicity. It allows us to describe the
|
||||
forces acting on an object as well as the motion of the object. We can describe
|
||||
a planets orbital movement \cite{britannica:2023:kepler}, calculate the ... necessary
|
||||
to launch satellites into orbit, or simply figure out where a ball is going to land
|
||||
when you throw it... However, when want to study an object at a microscopic level,
|
||||
e.g. a single atom, classical mechanics falls short.
|
||||
|
||||
% Thomas Young first performed the double-slit experiment in 1801, to demonstrate
|
||||
% the principle of interference of light \cite{britannica:2023:young}, postulating
|
||||
% light as waves. In the study of blackbodies, scientists were not able to describe
|
||||
% the radiated intensity of increased frequencies using classical mechanichs, as they
|
||||
% contradicted the principle of conservation of energy \cite{britannica:1998:planck}.
|
||||
% Max Planck assumed that the radiated energy consist of discrete values, or quanta,
|
||||
% to describe the peak in radiated energy.
|
||||
|
||||
Light as particles -> waves -> particles/packets
|
||||
Erwin Schrödinger wanted to find a mathematical description of the wave characteristics
|
||||
of matter, supporting the wave-particle idea. He postulated a function which varies
|
||||
|
||||
Reference in New Issue
Block a user