Finish report
This commit is contained in:
@@ -47,7 +47,7 @@ the left hand side, and the terms containing $n$ time step on the right hand sid
|
||||
&= u_{\ivec, \jvec}^{n} + \frac{i \Delta t}{2 \Delta x^{2}} \big[ u_{\ivec+1, \jvec}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec-1, \jvec}^{n} \big] \\
|
||||
& \quad + \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n} \big] - \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n}
|
||||
\end{align*}
|
||||
Since we will use an equal step size $h$ in both $x$ and $y$ direction, we can use
|
||||
Since we use an equal step size $h$ in both $x$ and $y$ direction, we can use
|
||||
\begin{align*}
|
||||
\frac{i \Delta t}{2 \Delta h^{2}} = \frac{i \Delta t}{2 \Delta x^{2}} = \frac{i \Delta t}{2 \Delta y^{2}} \ ,
|
||||
\end{align*}
|
||||
@@ -65,7 +65,7 @@ Now, the discretized Schrödinger equation can be rewritten as
|
||||
|
||||
|
||||
\section{Matrix structure}\label{ap:matrix_structure}
|
||||
For $u$ vector of length $(M-2) = 3$, the matrices $A$ and $B$ have size
|
||||
For a $u$ vector of length $(M-2) = 3$, the matrices $A$ and $B$ have size
|
||||
$(M-2)^{2} \times (M-2)^{2} = 9 \times 9$ given by
|
||||
\begin{align*}
|
||||
A =
|
||||
|
||||
Reference in New Issue
Block a user