Add draft for report, with a general setup of theoretical background and methods. Not ready for review!

This commit is contained in:
Janita Willumsen
2023-12-15 16:17:33 +01:00
parent 1661ce0f54
commit 29e6912f3f
6 changed files with 363 additions and 2 deletions

View File

@@ -2,6 +2,47 @@
\begin{document}
\appendix
\section{The Crank-Nicholson method}\label{ap:crank_nicolson}
The Crank-Nicolson \(CN\) approach considers both the forward difference, an explicit scheme,
\begin{equation*}
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} = F_{\ivec, \jvec}^{n} \ ,
\end{equation*}
and the backward difference, an implicit scheme,
\begin{equation*}
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} = F_{\ivec, \jvec}^{n+1} \ .
\end{equation*}
The result is a linear combination of the explicit and implicit scheme, given by
\begin{align*}
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} &= \theta F_{\ivec, \jvec}^{n+1} + (1 - \theta) F_{\ivec, \jvec}^{n} \ .
\end{align*}
The parameter $\theta$ is introduced for a general approach, however, for CN $\theta = 1/2$.
\begin{align*}
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} &= \frac{1}{2} \bigg[ F_{\ivec, \jvec}^{n+1} + F_{\ivec, \jvec}^{n} \bigg] \\
\end{align*}
We need the first derivative in respect to both time and position, as well as the second derivative in respect to position. Taylor expanding will result in a discretized version, assume this is known...
Schrödinger contain $i$ at the lhs, factor it as
\begin{align*}
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} &= \frac{1}{2i} \bigg[ F_{\ivec, \jvec}^{n+1} + F_{\ivec, \jvec}^{n} \bigg] \\
&= -\frac{i}{2} \bigg[ F_{\ivec, \jvec}^{n+1} + F_{\ivec, \jvec}^{n} \bigg] & \text{, where $\frac{1}{i} = -i$}
\end{align*}
Using Equation \eqref{eq:schrodinger_dimensionless}, we get
\begin{align*}
u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n} & -\frac{i \Delta t}{2} \bigg[ F_{\ivec, \jvec}^{n+1} + F_{\ivec, \jvec}^{n} \bigg] \\
&= -\frac{i \Delta t}{2} \bigg[ - \frac{u_{\ivec+1, \jvec}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec-1, \jvec}^{n+1}}{2 \Delta x^{2}} \\
& \quad - \frac{u_{\ivec, \jvec+1}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec, \jvec-1}^{n+1}}{2 \Delta y^{2}} + \frac{1}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n+1} \\
& \quad - \frac{u_{\ivec+1, \jvec}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec-1, \jvec}^{n}}{2 \Delta x^{2}} \\
& \quad - \frac{u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n}}{2 \Delta y^{2}} + \frac{1}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n} \bigg] \\
\end{align*}
We rewrite the expression,
\begin{align*}
& u_{\ivec, \jvec}^{n+1} - \frac{i \Delta t}{2 \Delta x^{2}} \big[ u_{\ivec+1, \jvec}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec-1, \jvec}^{n+1} \big] \\
& - \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec, \jvec-1}^{n+1} \big] + \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n+1} \\
&= u_{\ivec, \jvec}^{n} + \frac{i \Delta t}{2 \Delta x^{2}} \big[ u_{\ivec+1, \jvec}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec-1, \jvec}^{n} \big] \\
& \quad + \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n} \big] - \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n} \\
\end{align*}
\end{document}

View File

@@ -2,6 +2,13 @@
\begin{document}
\section{Introduction}\label{sec:introduction}
% Light - particle or wave
% - double-slit, blackbodies radiation
% Position space
% - classical vs quantum mechanics
\end{document}
% crank-nicolson method!
% wave equation

View File

@@ -1,7 +1,29 @@
\documentclass[../schrodinger_simulation.tex]{subfiles}
\begin{document}
\section{Methods}\label{sec:methods}
\section{Methods}\label{sec:methods} %
\subsection{Double-slit experiment}\label{ssec:double_slit} %
In the beginning of the 1800s, the general view was that light consisted of particles.
However, in 1801 Thomas Young demonstrated the principle of interference of light
\cite{britannica:2023:young}, while postulating light as waves rather than particles.
% Thomas Young first performed the double-slit experiment in 1801, to demonstrate
% the principle of interference of light \cite{britannica:2023:young}, postulating
% light as waves. In the study of blackbodies, scientists were not able to describe
% the radiated intensity of increased frequencies using classical mechanichs, as they
% contradicted the principle of conservation of energy \cite{britannica:1998:planck}.
% Max Planck assumed that the radiated energy consist of discrete values, or quanta,
% to describe the peak in radiated energy.
The double-slit experiment
\subsection{Schrödinger equation}\label{ssec:schrodinger} %
\subsection{Crank-Nicolson}\label{ssec:crank_nicolson} %
% Might be better to move theory on double-slit here and have a subsection of light
% property etc. as a first section or in introduction?
\subsection{Implementation}\label{ssec:implementation} %
\subsection{Tools}\label{ssec:tools} %
\end{document}