Add parameters for python script, edit method, and add result for problem 7.
This commit is contained in:
parent
e7a32bebab
commit
288bfb7058
9 changed files with 165 additions and 15 deletions
|
|
@ -34,15 +34,64 @@ Using Equation \eqref{eq:schrodinger_dimensionless}, we get
|
|||
&= -\frac{i \Delta t}{2} \bigg[ - \frac{u_{\ivec+1, \jvec}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec-1, \jvec}^{n+1}}{2 \Delta x^{2}} \\
|
||||
& \quad - \frac{u_{\ivec, \jvec+1}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec, \jvec-1}^{n+1}}{2 \Delta y^{2}} + \frac{1}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n+1} \\
|
||||
& \quad - \frac{u_{\ivec+1, \jvec}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec-1, \jvec}^{n}}{2 \Delta x^{2}} \\
|
||||
& \quad - \frac{u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n}}{2 \Delta y^{2}} + \frac{1}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n} \bigg] \\
|
||||
& \quad - \frac{u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n}}{2 \Delta y^{2}} + \frac{1}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n} \bigg]
|
||||
\end{align*}
|
||||
We rewrite the expression,
|
||||
We rewrite the expression and gather all terms containing the $n+1$ time step on
|
||||
the left hand side, and the terms containing $n$ time step on the right hand side.
|
||||
\begin{align*}
|
||||
& u_{\ivec, \jvec}^{n+1} - \frac{i \Delta t}{2 \Delta x^{2}} \big[ u_{\ivec+1, \jvec}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec-1, \jvec}^{n+1} \big] \\
|
||||
& - \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec, \jvec-1}^{n+1} \big] + \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n+1} \\
|
||||
&= u_{\ivec, \jvec}^{n} + \frac{i \Delta t}{2 \Delta x^{2}} \big[ u_{\ivec+1, \jvec}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec-1, \jvec}^{n} \big] \\
|
||||
& \quad + \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n} \big] - \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n} \\
|
||||
& \quad + \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n} \big] - \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n}
|
||||
\end{align*}
|
||||
In addition, since we will use an equal step size $h$ in both $x$ and $y$ direction,
|
||||
we can use
|
||||
\begin{align*}
|
||||
\frac{i \Delta t}{2 \Delta h^{2}} = \frac{i \Delta t}{2 \Delta x^{2}} = \frac{i \Delta t}{2 \Delta y^{2}} \ ,
|
||||
\end{align*}
|
||||
and define
|
||||
\begin{align*}
|
||||
r \equiv \frac{i \Delta t}{2 \Delta h^{2}}
|
||||
\end{align*}
|
||||
Now, the discretized Schrödinger equation can be written as
|
||||
\begin{align*}
|
||||
& u_{\ivec, \jvec}^{n+1} - r \big[ u_{\ivec+1, \jvec}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec-1, \jvec}^{n+1} \big] \\
|
||||
& - r \big[ u_{\ivec, \jvec+1}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec, \jvec-1}^{n+1} \big] + \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n+1} \\
|
||||
&= u_{\ivec, \jvec}^{n} + r \big[ u_{\ivec+1, \jvec}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec-1, \jvec}^{n} \big] \\
|
||||
& \quad + r \big[ u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n} \big] - \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n} \ .
|
||||
\end{align*}
|
||||
|
||||
|
||||
\section{Matrix structure}\label{ap:matrix_structure}
|
||||
For $u$ vector of length $(M-2) = 3$, the matrices $A$ and $B$ have size
|
||||
$(M-2)^{2} \times (M-2)^{2} = 9 \times 9$ given by
|
||||
\begin{align*}
|
||||
A =
|
||||
\begin{bmatrix}
|
||||
a_{0} & -r & 0 & -r & 0 & 0 & 0 & 0 & 0 \\
|
||||
-r & a_{1} & -r & 0 & -r & 0 & 0 & 0 & 0 \\
|
||||
0 & -r & a_{2} & 0 & 0 & -r & 0 & 0 & 0 \\
|
||||
-r & 0 & 0 & a_{3} & -r & 0 & -r & 0 & 0 \\
|
||||
0 & -r & 0 & -r & a_{4} & -r & 0 & -r & 0 \\
|
||||
0 & 0 & -r & 0 & -r & a_{5} & 0 & 0 & -r \\
|
||||
0 & 0 & 0 & -r & 0 & 0 & a_{6} & -r & 0 \\
|
||||
0 & 0 & 0 & 0 & -r & 0 & -r & a_{7} & -r \\
|
||||
0 & 0 & 0 & 0 & 0 & -r & 0 & -r & a_{8} \\
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
B =
|
||||
\begin{bmatrix}
|
||||
b_{0} & r & 0 & r & 0 & 0 & 0 & 0 & 0 \\
|
||||
r & b_{1} & r & 0 & r & 0 & 0 & 0 & 0 \\
|
||||
0 & r & b_{2} & 0 & 0 & r & 0 & 0 & 0 \\
|
||||
r & 0 & 0 & b_{3} & r & 0 & r & 0 & 0 \\
|
||||
0 & r & 0 & r & b_{4} & r & 0 & r & 0 \\
|
||||
0 & 0 & r & 0 & r & b_{5} & 0 & 0 & r \\
|
||||
0 & 0 & 0 & r & 0 & 0 & b_{6} & r & 0 \\
|
||||
0 & 0 & 0 & 0 & r & 0 & r & b_{7} & r \\
|
||||
0 & 0 & 0 & 0 & 0 & r & 0 & r & b_{8} \\
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
\end{document}
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue