Update code
This commit is contained in:
@@ -11,11 +11,14 @@
|
||||
* */
|
||||
#include "IsingModel.hpp"
|
||||
|
||||
#include <cmath>
|
||||
#include <random>
|
||||
|
||||
IsingModel::IsingModel()
|
||||
{
|
||||
}
|
||||
|
||||
IsingModel::IsingModel(uint L, double T)
|
||||
IsingModel::IsingModel(int L, double T)
|
||||
{
|
||||
this->L = L;
|
||||
this->T = T;
|
||||
@@ -26,7 +29,7 @@ IsingModel::IsingModel(uint L, double T)
|
||||
this->initialize_energy();
|
||||
}
|
||||
|
||||
IsingModel::IsingModel(uint L, double T, int val)
|
||||
IsingModel::IsingModel(int L, double T, int val)
|
||||
{
|
||||
this->L = L;
|
||||
this->T = T;
|
||||
@@ -41,13 +44,13 @@ IsingModel::IsingModel(uint L, double T, int val)
|
||||
void IsingModel::initialize_lattice()
|
||||
{
|
||||
this->lattice.set_size(this->L, this->L);
|
||||
std::random_device rd;
|
||||
std::mt19937 engine(rd());
|
||||
std::random_device rd{};
|
||||
std::mt19937 engine{rd()};
|
||||
|
||||
std::uniform_int_distribution<int> coin_flip(0, 1);
|
||||
std::uniform_int_distribution<> coin_flip(0, 1);
|
||||
|
||||
for (size_t i = 0; i < this->lattice.n_elem; i++)
|
||||
this->lattice(i) = coin_flip(engine) == 1 ? 1 : -1;
|
||||
this->lattice(i) = 2 * coin_flip(engine) - 1;
|
||||
}
|
||||
|
||||
void IsingModel::initialize_neighbors()
|
||||
@@ -64,7 +67,7 @@ void IsingModel::initialize_neighbors()
|
||||
void IsingModel::initialize_energy_diff()
|
||||
{
|
||||
for (int i = -8; i <= 8; i += 4) {
|
||||
this->energy_diff.insert({i, std::exp(-((double)i / this->T))});
|
||||
this->energy_diff.insert({i, std::exp(-(double)i / this->T)});
|
||||
}
|
||||
}
|
||||
|
||||
@@ -72,7 +75,7 @@ void IsingModel::initialize_magnetization()
|
||||
{
|
||||
this->M = 0.;
|
||||
for (size_t i = 0; i < this->lattice.n_elem; i++) {
|
||||
this->M += (double)this->lattice(i);
|
||||
this->M += this->lattice(i);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -83,21 +86,23 @@ void IsingModel::initialize_energy()
|
||||
// Loop through the matrix
|
||||
for (size_t j = 0; j < this->L; j++) {
|
||||
for (size_t i = 0; i < this->L; i++) {
|
||||
this->E -= (double)this->lattice(i, j)
|
||||
this->E -= this->lattice(i, j)
|
||||
* (this->lattice(i, this->neighbors(j, RIGHT))
|
||||
+ this->lattice(this->neighbors(i, DOWN), j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
data_t IsingModel::Metropolis(std::mt19937 &engine)
|
||||
data_t IsingModel::Metropolis()
|
||||
{
|
||||
uint ri, rj;
|
||||
std::random_device rd{};
|
||||
std::mt19937_64 engine{rd()};
|
||||
|
||||
int ri, rj;
|
||||
int dE;
|
||||
data_t res;
|
||||
|
||||
// Create random distribution for indeces
|
||||
std::uniform_int_distribution<uint> random_index(0, this->L - 1);
|
||||
std::uniform_int_distribution<> random_index(0, this->L - 1);
|
||||
// Create random distribution for acceptance
|
||||
std::uniform_real_distribution<> random_number(0., 1.);
|
||||
|
||||
@@ -118,25 +123,21 @@ data_t IsingModel::Metropolis(std::mt19937 &engine)
|
||||
if (random_number(engine) <= this->energy_diff[dE]) {
|
||||
// Update if the configuration is accepted
|
||||
this->lattice(ri, rj) *= -1;
|
||||
this->M += 2. * (double)this->lattice(ri, rj);
|
||||
this->E += (double)dE;
|
||||
this->M += 2 * this->lattice(ri, rj);
|
||||
this->E += dE;
|
||||
}
|
||||
}
|
||||
res.E = this->E;
|
||||
res.E2 = this->E * this->E;
|
||||
res.M = this->M;
|
||||
res.M2 = this->M * this->M;
|
||||
res.M_abs = std::abs(this->M);
|
||||
|
||||
return res;
|
||||
return data_t((double)this->E, (double)(this->E * this->E), (double)this->M,
|
||||
(double)(this->M * this->M), std::fabs((double)this->M));
|
||||
}
|
||||
|
||||
double IsingModel::get_E()
|
||||
int IsingModel::get_E()
|
||||
{
|
||||
return this->E;
|
||||
}
|
||||
|
||||
double IsingModel::get_M()
|
||||
int IsingModel::get_M()
|
||||
{
|
||||
return this->M;
|
||||
}
|
||||
|
||||
@@ -16,7 +16,7 @@ OPENMP=-fopenmp
|
||||
# Add a debug flag when compiling (For the DEBUG macro in utils.hpp)
|
||||
DEBUG ?= 0
|
||||
ifeq ($(DEBUG), 1)
|
||||
DBGFLAG=-DDBG
|
||||
DBGFLAG=-DDBG -g
|
||||
else
|
||||
DBGFLAG=
|
||||
endif
|
||||
|
||||
@@ -10,63 +10,3 @@
|
||||
* @bug No known bugs
|
||||
* */
|
||||
#include "data_type.hpp"
|
||||
|
||||
template <class T>
|
||||
data_t operator/(const data_t &data, T num)
|
||||
{
|
||||
data_t res = data;
|
||||
res.E /= num;
|
||||
res.E2 /= num;
|
||||
res.M /= num;
|
||||
res.M2 /= num;
|
||||
res.M_abs /= num;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// Explicit instantiation
|
||||
template data_t operator/(const data_t &, uint);
|
||||
template data_t operator/(const data_t &, ulong);
|
||||
template data_t operator/(const data_t &,int);
|
||||
template data_t operator/(const data_t &,double);
|
||||
|
||||
template <class T>
|
||||
data_t& operator/=(data_t &data, T num)
|
||||
{
|
||||
data.E /= num;
|
||||
data.E2 /= num;
|
||||
data.M /= num;
|
||||
data.M2 /= num;
|
||||
data.M_abs /= num;
|
||||
|
||||
return data;
|
||||
}
|
||||
|
||||
// Explicit instantiation
|
||||
template data_t& operator/=(data_t &, uint);
|
||||
template data_t& operator/=(data_t &, ulong);
|
||||
template data_t& operator/=(data_t &,int);
|
||||
template data_t& operator/=(data_t &,double);
|
||||
|
||||
data_t operator+(const data_t &a, const data_t &b)
|
||||
{
|
||||
data_t res = a;
|
||||
res.E += b.E;
|
||||
res.E2 += b.E2;
|
||||
res.M += b.M;
|
||||
res.M2 += b.M2;
|
||||
res.M_abs += b.M_abs;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
data_t& operator+=(data_t &a, const data_t &b)
|
||||
{
|
||||
a.E += b.E;
|
||||
a.E2 += b.E2;
|
||||
a.M += b.M;
|
||||
a.M2 += b.M2;
|
||||
a.M_abs += b.M_abs;
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
96
src/main.cpp
96
src/main.cpp
@@ -9,35 +9,105 @@
|
||||
*
|
||||
* @bug No known bugs
|
||||
* */
|
||||
#include "data_type.hpp"
|
||||
#include "monte_carlo.hpp"
|
||||
#include "utils.hpp"
|
||||
|
||||
#include <csignal>
|
||||
#include <cstdlib>
|
||||
#include <iostream>
|
||||
#include <omp.h>
|
||||
|
||||
/** @brief The main function.*/
|
||||
int main()
|
||||
void create_burn_in_time_data()
|
||||
{
|
||||
// uint test_cycles = test_2x2_lattice(1e-7, 10000);
|
||||
// monte_carlo(1.0, 2, 10000, "output/2_lattice_test.txt");
|
||||
|
||||
// Test burn-in time
|
||||
monte_carlo_progression(1.0, 20, 10000, "output/burn_in_time_1_0.txt");
|
||||
monte_carlo_progression(2.4, 20, 10000, "output/burn_in_time_2_4.txt");
|
||||
monte_carlo_progression(1.0, 20, 20000,
|
||||
"output/burn_in_time/unordered_1_0.txt");
|
||||
monte_carlo_progression(1.0, 20, 20000, 1,
|
||||
"output/burn_in_time/ordered_1_0.txt");
|
||||
monte_carlo_progression(2.4, 20, 20000,
|
||||
"output/burn_in_time/unordered_2_4.txt");
|
||||
monte_carlo_progression(2.4, 20, 20000, 1,
|
||||
"output/burn_in_time/ordered_2_4.txt");
|
||||
}
|
||||
|
||||
void create_pd_estimate_data()
|
||||
{
|
||||
// Estimate pd
|
||||
pd_estimate(1.0, 20, 1000000, "output/pd_estimate/estimate_1_0.txt");
|
||||
pd_estimate(2.4, 20, 1000000, "output/pd_estimate/estimate_2_4.txt");
|
||||
}
|
||||
|
||||
void test_parallel_speedup()
|
||||
{
|
||||
// Test the openmp speedup
|
||||
data_t data;
|
||||
double t0, t1, t2;
|
||||
int tries = 5;
|
||||
t0 = omp_get_wtime();
|
||||
phase_transition(20, 2.1, 2.4, 1000, monte_carlo_serial,
|
||||
"output/phase_transition/size_20.txt");
|
||||
for (size_t i = 0; i < tries; i++)
|
||||
monte_carlo_serial(20, 1.0, 10000);
|
||||
t1 = omp_get_wtime();
|
||||
phase_transition(20, 2.1, 2.4, 1000, monte_carlo_parallel,
|
||||
"output/phase_transition/size_20.txt");
|
||||
for (size_t i = 0; i < tries; i++)
|
||||
monte_carlo_parallel(20, 1.0, 10000);
|
||||
t2 = omp_get_wtime();
|
||||
|
||||
std::cout << "Time serial : " << t1 - t0 << " seconds" << '\n';
|
||||
std::cout << "Time parallel : " << t2 - t1 << " seconds" << '\n';
|
||||
std::cout << "Time serial : " << (t1 - t0) / tries << " seconds"
|
||||
<< '\n';
|
||||
std::cout << "Time parallel : " << (t2 - t1) / tries << " seconds"
|
||||
<< '\n';
|
||||
std::cout << "Speedup parallel: " << (t1 - t0) / (t2 - t1) << '\n';
|
||||
}
|
||||
|
||||
void create_phase_transition_data()
|
||||
{
|
||||
double t0, t1;
|
||||
|
||||
t0 = omp_get_wtime();
|
||||
// Phase transition
|
||||
phase_transition(20, 2.1, 2.4, 40, monte_carlo_parallel,
|
||||
"output/phase_transition/size_20.txt");
|
||||
phase_transition(40, 2.1, 2.4, 40, monte_carlo_parallel,
|
||||
"output/phase_transition/size_40.txt");
|
||||
phase_transition(60, 2.1, 2.4, 40, monte_carlo_parallel,
|
||||
"output/phase_transition/size_60.txt");
|
||||
phase_transition(80, 2.1, 2.4, 40, monte_carlo_parallel,
|
||||
"output/phase_transition/size_80.txt");
|
||||
phase_transition(100, 2.1, 2.4, 40, monte_carlo_parallel,
|
||||
"output/phase_transition/size_100.txt");
|
||||
t1 = omp_get_wtime();
|
||||
|
||||
std::cout << "Time: " << t1 - t0 << std::endl;
|
||||
}
|
||||
|
||||
/** @brief The main function.*/
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
if (argc < 2) {
|
||||
std::cout << "Need at least 1 argument, got " << argc - 1
|
||||
<< " arguments." << std::endl;
|
||||
abort();
|
||||
}
|
||||
|
||||
int arg = atoi(argv[1]);
|
||||
|
||||
switch (arg) {
|
||||
case 1:
|
||||
create_burn_in_time_data();
|
||||
break;
|
||||
case 2:
|
||||
create_pd_estimate_data();
|
||||
break;
|
||||
case 3:
|
||||
test_parallel_speedup();
|
||||
break;
|
||||
case 4:
|
||||
create_phase_transition_data();
|
||||
break;
|
||||
default:
|
||||
std::cout << "Not a valid option!" << std::endl;
|
||||
abort();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -11,50 +11,15 @@
|
||||
* */
|
||||
#include "monte_carlo.hpp"
|
||||
|
||||
uint test_2x2_lattice(double tol, uint max_cycles)
|
||||
{
|
||||
data_t data, tmp;
|
||||
size_t L = 2;
|
||||
size_t n_spins = L * L;
|
||||
double T = 1.;
|
||||
size_t cycles = 0;
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
// Create random engine using the mersenne twister
|
||||
std::random_device rd;
|
||||
std::mt19937 engine(rd());
|
||||
|
||||
IsingModel test(L, T);
|
||||
|
||||
double E, M;
|
||||
|
||||
std::function<bool(double, double)> is_close = [tol](double a, double b) {
|
||||
return std::abs(a - b) < tol;
|
||||
};
|
||||
|
||||
// Loop through cycles
|
||||
while (cycles++ < max_cycles) {
|
||||
data += test.Metropolis(engine);
|
||||
tmp = data / (cycles * n_spins);
|
||||
// if (close(EPS_2, tmp.E)
|
||||
//&& close(MAG_2, tmp.M)
|
||||
//&& close(CV_2, (tmp.E2 - tmp.E * tmp.E) / (T * T))
|
||||
//&& close(X_2, (tmp.M2 - tmp.M_abs * tmp.M_abs) / T)) {
|
||||
// return cycles;
|
||||
//}
|
||||
if (is_close(EPS_2, tmp.E) && is_close(MAG_2, tmp.M)) {
|
||||
return cycles;
|
||||
}
|
||||
}
|
||||
std::cout << "hello" << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void monte_carlo_progression(double T, uint L, uint cycles,
|
||||
void monte_carlo_progression(double T, int L, int cycles,
|
||||
const std::string filename)
|
||||
{
|
||||
// Set some variables
|
||||
data_t data, tmp;
|
||||
uint n_spins = L * L;
|
||||
int n_spins = L * L;
|
||||
|
||||
// File stuff
|
||||
std::string directory = utils::dirname(filename);
|
||||
@@ -62,7 +27,10 @@ void monte_carlo_progression(double T, uint L, uint cycles,
|
||||
|
||||
// Create random engine using the mersenne twister
|
||||
std::random_device rd;
|
||||
std::mt19937 engine(rd());
|
||||
uint32_t rd_sample = rd();
|
||||
std::mt19937 engine(rd_sample);
|
||||
|
||||
std::cout << "Seed: " << rd_sample << std::endl;
|
||||
|
||||
IsingModel ising(L, T);
|
||||
|
||||
@@ -72,7 +40,7 @@ void monte_carlo_progression(double T, uint L, uint cycles,
|
||||
|
||||
// Loop through cycles
|
||||
for (size_t i = 1; i <= cycles; i++) {
|
||||
data += ising.Metropolis(engine);
|
||||
data += ising.Metropolis();
|
||||
tmp = data / (i * n_spins);
|
||||
ofile << i << ',' << tmp.E << ',' << tmp.E2 << ',' << tmp.M << ','
|
||||
<< tmp.M2 << ',' << tmp.M_abs << '\n';
|
||||
@@ -80,11 +48,12 @@ void monte_carlo_progression(double T, uint L, uint cycles,
|
||||
ofile.close();
|
||||
}
|
||||
|
||||
void pd_estimate(double T, uint L, uint cycles, const std::string filename)
|
||||
void monte_carlo_progression(double T, int L, int cycles, int value,
|
||||
const std::string filename)
|
||||
{
|
||||
// Set some variables
|
||||
data_t data;
|
||||
uint n_spins = L * L;
|
||||
data_t data, tmp;
|
||||
int n_spins = L * L;
|
||||
|
||||
// File stuff
|
||||
std::string directory = utils::dirname(filename);
|
||||
@@ -92,104 +61,126 @@ void pd_estimate(double T, uint L, uint cycles, const std::string filename)
|
||||
|
||||
// Create random engine using the mersenne twister
|
||||
std::random_device rd;
|
||||
uint32_t rd_sample = rd();
|
||||
std::mt19937 engine(rd());
|
||||
|
||||
std::cout << "Seed: " << rd_sample << std::endl;
|
||||
|
||||
IsingModel ising(L, T, value);
|
||||
|
||||
// Create path and open file
|
||||
utils::mkpath(directory);
|
||||
ofile.open(filename);
|
||||
|
||||
// Loop through cycles
|
||||
for (size_t i = 1; i <= cycles; i++) {
|
||||
data += ising.Metropolis();
|
||||
tmp = data / (i * n_spins);
|
||||
ofile << i << ',' << tmp.E << ',' << tmp.E2 << ',' << tmp.M << ','
|
||||
<< tmp.M2 << ',' << tmp.M_abs << '\n';
|
||||
}
|
||||
ofile.close();
|
||||
}
|
||||
|
||||
void pd_estimate(double T, int L, int cycles, const std::string filename)
|
||||
{
|
||||
// Set some variables
|
||||
data_t data, tmp;
|
||||
int n_spins = L * L;
|
||||
|
||||
// File stuff
|
||||
std::string directory = utils::dirname(filename);
|
||||
std::ofstream ofile;
|
||||
|
||||
IsingModel ising(L, T);
|
||||
|
||||
// Create path and open file
|
||||
utils::mkpath(directory);
|
||||
ofile.open(filename);
|
||||
|
||||
double E, M;
|
||||
|
||||
// Figure out bin widths and such
|
||||
// Loop through cycles
|
||||
for (size_t i = 1; i <= cycles; i++) {
|
||||
data = ising.Metropolis() / n_spins;
|
||||
ofile << data.E << ',' << data.E2 << ',' << data.M << ',' << data.M2
|
||||
<< ',' << data.M_abs << '\n';
|
||||
}
|
||||
ofile.close();
|
||||
}
|
||||
|
||||
// Code for seeing phase transitions.
|
||||
void monte_carlo_serial(data_t &data, uint L, double T, uint cycles)
|
||||
data_t monte_carlo_serial(int L, double T, int cycles)
|
||||
{
|
||||
data_t data;
|
||||
IsingModel model(L, T);
|
||||
// Create random engine using the mersenne twister
|
||||
std::random_device rd;
|
||||
std::mt19937 engine(rd());
|
||||
|
||||
for (size_t i = 0; i < BURN_IN_TIME; i++) {
|
||||
model.Metropolis(engine);
|
||||
model.Metropolis();
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < cycles; i++) {
|
||||
data += model.Metropolis(engine);
|
||||
double E, M;
|
||||
for (size_t i = 0; i < (uint)cycles; i++) {
|
||||
data += model.Metropolis();
|
||||
}
|
||||
data /= cycles;
|
||||
|
||||
return data;
|
||||
}
|
||||
|
||||
void monte_carlo_parallel(data_t &data, uint L, double T, uint cycles)
|
||||
data_t monte_carlo_parallel(int L, double T, int cycles)
|
||||
{
|
||||
data_t data;
|
||||
#pragma omp parallel
|
||||
{
|
||||
// Each thread creates an instance of IsingModel.
|
||||
IsingModel model(L, T);
|
||||
// Each thread creates an instance of the mersenne twister
|
||||
std::random_device rd;
|
||||
std::mt19937 engine(rd());
|
||||
|
||||
data_t tmp;
|
||||
|
||||
// Each thread runs the Metropolis algorithm before starting to collect
|
||||
// samples
|
||||
for (size_t i = 0; i < BURN_IN_TIME; i++) {
|
||||
model.Metropolis(engine);
|
||||
model.Metropolis();
|
||||
}
|
||||
|
||||
// Now each thread work on one loop together, but using their own
|
||||
// instances of things, but the total of cycles add up.
|
||||
// static ensure that each thread gets the same amount of iterations
|
||||
#pragma omp for schedule(static)
|
||||
for (size_t i = 0; i < cycles; i++) {
|
||||
tmp = tmp + model.Metropolis(engine);
|
||||
}
|
||||
|
||||
// Combine all the data.
|
||||
#pragma omp critical
|
||||
{
|
||||
data += tmp;
|
||||
#pragma omp for schedule(static) reduction(+ : data)
|
||||
for (size_t i = 0; i < (uint)cycles; i++) {
|
||||
data += model.Metropolis();
|
||||
}
|
||||
}
|
||||
|
||||
data /= cycles;
|
||||
double norm = 1. / (double)cycles;
|
||||
|
||||
return data * norm;
|
||||
}
|
||||
|
||||
void phase_transition(
|
||||
uint L, double start_T, double end_T, uint points_T,
|
||||
std::function<void(data_t &, uint, double, uint)> monte_carlo,
|
||||
std::string outfile)
|
||||
void phase_transition(int L, double start, double end, int points,
|
||||
std::function<data_t(int, double, int)> monte_carlo,
|
||||
std::string outfile)
|
||||
{
|
||||
double dt_T = (end_T - start_T) / points_T;
|
||||
uint cycles = 10000;
|
||||
uint N = L * L;
|
||||
double dt = (end - start) / (double)points;
|
||||
int cycles = 10000;
|
||||
int N = L * L;
|
||||
std::ofstream ofile;
|
||||
|
||||
data_t data[points_T];
|
||||
|
||||
for (size_t i = 0; i < points_T; i++) {
|
||||
monte_carlo(data[i], L, start_T + dt_T * i, cycles);
|
||||
}
|
||||
data_t data;
|
||||
|
||||
utils::mkpath(utils::dirname(outfile));
|
||||
ofile.open(outfile);
|
||||
|
||||
double temp, CV, X;
|
||||
double temp, CV, X, E_var, M_var;
|
||||
|
||||
using utils::scientific_format;
|
||||
for (size_t i = 0; i < points_T; i++) {
|
||||
temp = start_T + dt_T * i;
|
||||
CV = (data[i].E2 - data[i].E * data[i].E) / (N * temp * temp);
|
||||
X = (data[i].M2 - data[i].M_abs * data[i].M_abs) / (N * temp);
|
||||
for (size_t i = 0; i < points; i++) {
|
||||
temp = start + dt * i;
|
||||
data = monte_carlo(L, temp, cycles);
|
||||
E_var = (data.E2 - data.E * data.E) / (double)N;
|
||||
M_var = (data.M2 - data.M_abs * data.M_abs) / (double)N;
|
||||
|
||||
ofile << scientific_format(temp) << ','
|
||||
<< scientific_format(data[i].E / N) << ','
|
||||
<< scientific_format(data[i].M_abs / N) << ','
|
||||
<< scientific_format(CV) << ',' << scientific_format(X) << '\n';
|
||||
<< scientific_format(data.E / (double)N) << ','
|
||||
<< scientific_format(data.M_abs / N) << ','
|
||||
<< scientific_format(E_var / (temp * temp)) << ','
|
||||
<< scientific_format(M_var / temp) << '\n';
|
||||
}
|
||||
ofile.close();
|
||||
}
|
||||
|
||||
@@ -18,15 +18,22 @@
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <mpi.h>
|
||||
#include <sstream>
|
||||
|
||||
/** @brief The main function*/
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
double start = 1., end = 3.;
|
||||
uint points = 1000, L = 20, N;
|
||||
if (argc < 5) {
|
||||
std::cout << "You need at least 4 arguments" << std::endl;
|
||||
abort();
|
||||
}
|
||||
double t0, t1;
|
||||
t0 = MPI_Wtime();
|
||||
double start = atof(argv[1]), end = atof(argv[2]);
|
||||
int points = atoi(argv[3]), N;
|
||||
int lattice_sizes[] = {20, 40, 60, 80, 100};
|
||||
double dt = (end - start) / points;
|
||||
uint cycles = 10000;
|
||||
N = L * L;
|
||||
int cycles = atoi(argv[4]);
|
||||
std::ofstream ofile;
|
||||
|
||||
data_t data[points];
|
||||
@@ -41,10 +48,10 @@ int main(int argc, char **argv)
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &cluster_size);
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
|
||||
|
||||
uint remainder = points % cluster_size;
|
||||
int remainder = points % cluster_size;
|
||||
double i_start;
|
||||
uint i_points;
|
||||
// The last
|
||||
int i_points;
|
||||
// Distribute temperature points
|
||||
if (rank < remainder) {
|
||||
i_points = points / cluster_size + 1;
|
||||
i_start = start + dt * i_points * rank;
|
||||
@@ -57,52 +64,65 @@ int main(int argc, char **argv)
|
||||
data_t i_data[i_points];
|
||||
std::cout << "Rank " << rank << ": " << i_points << ',' << i_start << '\n';
|
||||
|
||||
for (size_t i = 0; i < i_points; i++) {
|
||||
monte_carlo_serial(i_data[i], L, i_start + dt * i, cycles);
|
||||
}
|
||||
for (int L : lattice_sizes) {
|
||||
N = L * L;
|
||||
for (size_t i = 0; i < i_points; i++) {
|
||||
i_data[i] = monte_carlo_parallel(L, i_start + dt * i, cycles);
|
||||
}
|
||||
|
||||
if (rank == 0) {
|
||||
std::copy_n(i_data, i_points, data);
|
||||
for (size_t i = 1; i < cluster_size; i++) {
|
||||
if (rank < remainder) {
|
||||
MPI_Recv((void *)i_data,
|
||||
sizeof(data_t) * (points / cluster_size + 1), MPI_CHAR,
|
||||
i, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
std::copy_n(i_data, points / cluster_size + 1,
|
||||
data + (points / cluster_size) * i);
|
||||
if (rank == 0) {
|
||||
std::copy_n(i_data, i_points, data);
|
||||
for (size_t i = 1; i < cluster_size; i++) {
|
||||
if (rank < remainder) {
|
||||
MPI_Recv((void *)i_data,
|
||||
sizeof(data_t) * (points / cluster_size + 1),
|
||||
MPI_CHAR, i, MPI_ANY_TAG, MPI_COMM_WORLD,
|
||||
MPI_STATUS_IGNORE);
|
||||
std::copy_n(i_data, points / cluster_size + 1,
|
||||
data + (points / cluster_size) * i);
|
||||
}
|
||||
else {
|
||||
MPI_Recv((void *)i_data,
|
||||
sizeof(data_t) * (points / cluster_size), MPI_CHAR,
|
||||
i, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
std::copy_n(i_data, points / cluster_size,
|
||||
data + (points / cluster_size) * i + remainder);
|
||||
}
|
||||
}
|
||||
else {
|
||||
MPI_Recv((void *)i_data,
|
||||
sizeof(data_t) * (points / cluster_size), MPI_CHAR, i,
|
||||
MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
std::copy_n(i_data, points / cluster_size,
|
||||
data + (points / cluster_size) * i + remainder);
|
||||
std::stringstream outfile;
|
||||
outfile << "output/phase_transition/size_" << L << ".txt";
|
||||
utils::mkpath(utils::dirname(outfile.str()));
|
||||
ofile.open(outfile.str());
|
||||
|
||||
double temp, CV, X;
|
||||
|
||||
using utils::scientific_format;
|
||||
for (size_t i = 0; i < points; i++) {
|
||||
temp = start + dt * i;
|
||||
CV = (data[i].E2 - data[i].E * data[i].E)
|
||||
/ ((double)N * temp * temp);
|
||||
X = (data[i].M2 - data[i].M_abs * data[i].M_abs)
|
||||
/ ((double)N * temp);
|
||||
|
||||
ofile << scientific_format(temp) << ','
|
||||
<< scientific_format(data[i].E / N) << ','
|
||||
<< scientific_format(data[i].M_abs / N) << ','
|
||||
<< scientific_format(CV) << ',' << scientific_format(X)
|
||||
<< '\n';
|
||||
}
|
||||
ofile.close();
|
||||
}
|
||||
else {
|
||||
MPI_Send(i_data, i_points * sizeof(data_t), MPI_CHAR, 0, rank,
|
||||
MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
else {
|
||||
MPI_Send(i_data, i_points * sizeof(data_t), MPI_CHAR, 0, rank,
|
||||
MPI_COMM_WORLD);
|
||||
|
||||
t1 = MPI_Wtime();
|
||||
|
||||
if (rank == 0) {
|
||||
std::cout << "Time: " << t1 - t0 << " seconds\n";
|
||||
}
|
||||
|
||||
MPI_Finalize();
|
||||
|
||||
std::string outfile = "output/phase_transition/size_20.txt";
|
||||
utils::mkpath(utils::dirname(outfile));
|
||||
ofile.open(outfile);
|
||||
|
||||
double temp, CV, X;
|
||||
|
||||
using utils::scientific_format;
|
||||
for (size_t i = 0; i < points; i++) {
|
||||
temp = start + dt * i;
|
||||
CV = (data[i].E2 - data[i].E * data[i].E) / (N * temp * temp);
|
||||
X = (data[i].M2 - data[i].M_abs * data[i].M_abs) / (N * temp);
|
||||
|
||||
ofile << scientific_format(temp) << ','
|
||||
<< scientific_format(data[i].E / N) << ','
|
||||
<< scientific_format(data[i].M_abs / N) << ','
|
||||
<< scientific_format(CV) << ',' << scientific_format(X) << '\n';
|
||||
}
|
||||
ofile.close();
|
||||
}
|
||||
|
||||
@@ -12,6 +12,19 @@
|
||||
#include "IsingModel.hpp"
|
||||
#include "testlib.hpp"
|
||||
|
||||
#include <fstream>
|
||||
|
||||
#define EPS_2 (-2 * std::sinh(8.)) / (std::cosh(8.) + 3)
|
||||
|
||||
#define MAG_2 (std::exp(8.) + 1) / (2 * (cosh(8.) + 3))
|
||||
|
||||
#define CV_2 \
|
||||
16 * (3 * std::cosh(8.) + 1) / ((std::cosh(8.) + 3) * (std::cosh(8.) + 3))
|
||||
|
||||
#define X_2 \
|
||||
(3 * std::exp(8.) + std::exp(-8.) + 3) \
|
||||
/ ((std::cosh(8.) + 3) * (std::cosh(8.) + 3))
|
||||
|
||||
/** @brief Test class for the Ising model
|
||||
* */
|
||||
class IsingModelTest {
|
||||
@@ -31,7 +44,7 @@ public:
|
||||
"Test lattice initialization.");
|
||||
|
||||
test.initialize_neighbors();
|
||||
arma::Mat<uint> neighbor_matrix("2, 1 ; 0, 2 ; 1, 0");
|
||||
arma::Mat<int> neighbor_matrix("2, 1 ; 0, 2 ; 1, 0");
|
||||
ASSERT(testlib::is_equal(neighbor_matrix, test.neighbors),
|
||||
"Test neighbor matrix.");
|
||||
|
||||
@@ -40,11 +53,94 @@ public:
|
||||
|
||||
// Test the initial magnetization.
|
||||
test.initialize_magnetization();
|
||||
ASSERT(std::abs(test.M - 9.) < 1e-8, "Test intial magnetization");
|
||||
ASSERT(std::fabs(test.M - 9.) < 1e-8, "Test intial magnetization");
|
||||
|
||||
// Test that the initial energy is correct
|
||||
test.initialize_energy();
|
||||
ASSERT(std::abs(test.E - (-18)) < 1e-8, "Test initial energy.");
|
||||
ASSERT(std::fabs(test.E - (-18)) < 1e-8, "Test initial energy.");
|
||||
}
|
||||
|
||||
/** @brief Test numerical data with analytical data.
|
||||
*
|
||||
* @param tol The tolerance between the analytical and numerical solution.
|
||||
* @param max_cycles The max number of Monte Carlo cycles.
|
||||
*
|
||||
* return int
|
||||
* */
|
||||
int test_2x2_lattice(double tol, int max_cycles)
|
||||
{
|
||||
data_t data, tmp;
|
||||
size_t L = 2;
|
||||
size_t n_spins = L * L;
|
||||
double T = 1.;
|
||||
size_t cycles = 0;
|
||||
|
||||
// Create random engine using the mersenne twister
|
||||
std::random_device rd;
|
||||
std::mt19937 engine(rd());
|
||||
|
||||
IsingModel test(L, T);
|
||||
|
||||
int arr[]{0, 0, 0, 0};
|
||||
|
||||
// Loop through cycles
|
||||
//std::ofstream ofile;
|
||||
//ofile.open("output/test_2x2.txt");
|
||||
while (cycles++ < max_cycles) {
|
||||
data += test.Metropolis();
|
||||
tmp = data / cycles;
|
||||
//ofile << cycles << ',' << tmp.E / n_spins << ','
|
||||
//<< tmp.M_abs / n_spins << ','
|
||||
//<< (tmp.E2 - tmp.E * tmp.E) / (T * T) / n_spins << ','
|
||||
//<< (tmp.M2 - tmp.M_abs * tmp.M_abs) / T / n_spins << '\n';
|
||||
if (testlib::close_to(EPS_2, tmp.E / n_spins, tol)
|
||||
&& testlib::close_to(MAG_2, tmp.M_abs / n_spins, tol)
|
||||
&& testlib::close_to(CV_2, (tmp.E2 - tmp.E * tmp.E) / (T * T)
|
||||
/ n_spins, tol)
|
||||
&& testlib::close_to(X_2, (tmp.M2 - tmp.M_abs * tmp.M_abs) / T
|
||||
/ n_spins, tol)) {
|
||||
return cycles;
|
||||
}
|
||||
}
|
||||
//std::cout << EPS_2 << ',' << MAG_2 << ',' << CV_2 << ',' << X_2
|
||||
//<< std::endl;
|
||||
//ofile.close();
|
||||
// cycles = 0;
|
||||
// data = 0;
|
||||
// IsingModel test_mag(L, T);
|
||||
// while (cycles++ < max_cycles) {
|
||||
// data += test.Metropolis();
|
||||
// tmp = data / (cycles * n_spins);
|
||||
// if (testlib::close_to(MAG_2, tmp.M, tol)) {
|
||||
// arr[1] = cycles;
|
||||
// break;
|
||||
//}
|
||||
//}
|
||||
// cycles = 0;
|
||||
// data = 0;
|
||||
// IsingModel test_CV(L, T);
|
||||
// while (cycles++ < max_cycles) {
|
||||
// data += test.Metropolis();
|
||||
// tmp = data / (cycles * n_spins);
|
||||
// if (testlib::close_to(CV_2, (tmp.E2 - tmp.E * tmp.E) / (T * T),
|
||||
// tol)) {
|
||||
// arr[2] = cycles;
|
||||
// break;
|
||||
//}
|
||||
//}
|
||||
// cycles = 0;
|
||||
// data = 0;
|
||||
// IsingModel test_X(L, T);
|
||||
// while (cycles++ < max_cycles) {
|
||||
// data += test.Metropolis();
|
||||
// tmp = data / (cycles * n_spins);
|
||||
// if (testlib::close_to(X_2, (tmp.M2 - tmp.M_abs * tmp.M_abs) / T,
|
||||
// tol)) {
|
||||
// arr[3] = cycles;
|
||||
// break;
|
||||
//}
|
||||
//}
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -54,4 +150,18 @@ int main()
|
||||
IsingModelTest test;
|
||||
|
||||
test.test_init_functions();
|
||||
int res = 0;
|
||||
int tmp;
|
||||
for (size_t i=0; i < 1000; i++) {
|
||||
tmp = test.test_2x2_lattice(1e-2, 1e5);
|
||||
if (tmp == 0) {
|
||||
std::cout << "not enough cycles\n";
|
||||
break;
|
||||
}
|
||||
res += tmp;
|
||||
}
|
||||
|
||||
std::cout << "Res: " << res / 1000 << std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user