Add to method and conclusion.

This commit is contained in:
Janita Willumsen 2023-11-30 12:53:20 +01:00
parent 5d9984e6c7
commit ad18cabfdd
3 changed files with 52 additions and 18 deletions

View file

@ -80,7 +80,8 @@ have two spins oriented up the total energy have two possible values, as shown i
conditions.}
\label{tab:lattice_config}
\end{table}
We use the analytical values, found in Table for both for lattices where $L = 2$ and $L > 2$.
We use the analytical values, found in Table for both for lattices where $L = 2$
and $L > 2$.
However, to compare the quantities for lattices where $L > 2$, we find energy
per spin given by
@ -94,6 +95,7 @@ and magnetization per spin given by
\label{eq:magnetization_spin}
\end{equation}
\subsection{Statistical mechanics}\label{subsec:statistical_mechanics}
When we study ferromagnetism, we have to consider the probability for a microstate
$\mathbf{s}$ at a fixed temperature $T$. The probability distribution function
@ -103,13 +105,19 @@ $\mathbf{s}$ at a fixed temperature $T$. The probability distribution function
\label{eq:boltzmann_distribution}
\end{equation}
known as the Boltzmann distribution. This is an exponential distribution, where
$\beta$ and $Z$ are given by
\begin{align*}
\beta =& \frac{1}{k_{B}} \ , &
Z &= \sum_{\text{all possible } \mathbf{s}} e^{-\beta E(\mathbf{s})} \ , \\
\end{align*}
and $k_{B}$ is the Boltzmann constant. $Z$ is a normalizing factor of the pdf,
known as the partition function, which we derive in Appendix \ref{sec:partition_function}
$\beta$ is given by
\begin{equation}
\beta = \frac{1}{k_{B}} \ ,
\label{eq:beta}
\end{equation}
where and $k_{B}$ is the Boltzmann constant. $Z$ is a normalizing factor of the
pdf, given by
\begin{equation}
Z = \sum_{\text{all possible } \mathbf{s}} e^{-\beta E(\mathbf{s})} \ ,
\label{eq:partition}
\end{equation}
and is known as the partition function. We derive $Z$ in Appendix \ref{sec:partition_function},
which gives us
\begin{equation*}
Z = 4 \cosh (8 \beta J) + 12 \ .
\end{equation*}
@ -117,27 +125,28 @@ Using the partition function and Eq. \eqref{eq:boltzmann_distribution}, the pdf
of a microstate at a fixed temperature is given by
\begin{equation}
p(\mathbf{s} \ | \ T) = \frac{1}{4 \cosh (8 \beta J) + 12} e^{-\beta E(\mathbf{s})} \ .
\label{eq:pdf}
\end{equation}
% Add something about why we use the expectation values?
We derive the analytical expressions for expectation values in Appendix.
\ref{sec:expectation_values}. We find the expected total energy
\begin{equation*} %\label{eq:energy_total_first}
\begin{equation}\label{eq:energy_total_result}
\langle E \rangle = -\frac{8J \sinh(8 \beta J)}{\cosh(8 \beta J) + 3} \ ,
\end{equation*}
\end{equation}
and the expected energy per spin
\begin{equation*} %\label{eq:energy_spin_first}
\begin{equation}\label{eq:energy_spin_result}
\langle \epsilon \rangle = \frac{-2J \sinh(8 \beta J)}{ \cosh(8 \beta J) + 3} \ .
\end{equation*}
\end{equation}
We find the expected absolute total magnetization
\begin{equation*} %\label{eq:magnetization_total_first}
\begin{equation}\label{eq:magnetization_total_result}
\langle |M| \rangle = \frac{2(e^{8 \beta J} + 2)}{\cosh(8 \beta J) + 3} \ ,
\end{equation*}
\end{equation}
and the expected magnetization per spin
\begin{equation*} %\label{eq:magnetization_spin_first}
\begin{equation}\label{eq:magnetization_spin_result}
\langle |m| \rangle = \frac{e^{8 \beta J} + 1}{2( \cosh(8 \beta J) + 3)} \ .
\end{equation*}
\end{equation}
We will also determine the heat capacity
We also need to determine the heat capacity
\begin{equation}
C_{V} = \frac{1}{k_{B} T^{2}} (\mathbb{E}(E^{2}) - [\mathbb{E}(E)]^{2}) \ ,
\label{eq:heat_capacity}
@ -180,6 +189,12 @@ Boltzmann constant we derive the remaining units, which can be found in Table
\subsection{Phase transition and critical temperature}\label{subsec:phase_critical}
% P9 critical temperature
When a ferromagnetic material is heated, it will change at a macroscopic level.
Based on a $2 \times 2$ lattice, we can show that the total energy is equal to the
energy where all spins have the orientation up \cite[p. 426]{hj:2015:comp_phys}.
Increasing the temperature of the external field, the Ising model move from an
ordered to an unordered phase. At the critical temperature the heat capacity $C_{V}$,
and the magnetic susceptibility $\chi$ diverge \cite[p. 431]{hj:2015:comp_phys}.
\subsection{The Markov chain Monte Carlo method}\label{subsec:mcmc_method}
Markov chains consist of a sequence of samples, where the probability of the next