Add draft for most of the method and result sections.
This commit is contained in:
@@ -3,6 +3,7 @@
|
||||
\begin{document}
|
||||
\section{Results}\label{sec:results}
|
||||
\subsection{Burn-in time}\label{subsec:burnin_time}
|
||||
$\boldsymbol{Draft}$
|
||||
We start with a lattice where $L = 20$, to study the burn-in time, that is the
|
||||
number of Monte Carlo cycles necessary for the system to reach an equilibrium.
|
||||
We consider two different temperatures $T_{1} = 1.0 J/k_{B}$ and $T_{2} = 2.4 J/k_{B}$,
|
||||
@@ -53,7 +54,14 @@ pdf using $T = 1.0$ result in
|
||||
\label{fig:burn_in_energy_2_4}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Probability distribution}\label{subsec:probability_distribution}
|
||||
$\boldsymbol{Draft}$
|
||||
% Histogram figures
|
||||
We use the estimated burn-in time to set starting time for sampling, then generate
|
||||
samples to plot in a histogram for $T_{1}$ in Figure \ref{fig:histogram_1_0} and
|
||||
$T_{2}$ in Figure \ref{fig:histogram_2_4}. For $T_{1}$ we can see that most samples
|
||||
have the expected value $-2$, we have a distribution with low variance.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{../images/pd_estimate_1_0.pdf}
|
||||
@@ -67,6 +75,9 @@ pdf using $T = 1.0$ result in
|
||||
\label{fig:histogram_2_4}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Phase transition}\label{subsec:phase_transition}
|
||||
$\boldsymbol{Draft}$
|
||||
% Phase transition figures
|
||||
\begin{figure}
|
||||
\centering
|
||||
@@ -95,6 +106,26 @@ pdf using $T = 1.0$ result in
|
||||
\caption{$\chi$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
|
||||
\label{fig:phase_susceptibility}
|
||||
\end{figure}
|
||||
We include results for 10 million MC cycles in Appendix \ref{sec:extra_results}
|
||||
|
||||
|
||||
\subsection{Critical temperature}\label{subsec:critical_temperature}
|
||||
$\boldsymbol{Draft}$
|
||||
We use the critical temperatures found in previous section, in addition to the
|
||||
scaling relation in Equation \eqref{eq:critical_intinite}
|
||||
\begin{equation}
|
||||
T_{c} - T_{c}(L = \infty) = \alpha L^{-1}
|
||||
\label{eq:critical_intinite}
|
||||
\end{equation}
|
||||
to estimate the critical temperature for a lattize of infinte size. We also
|
||||
compared the estimate with the analytical solution
|
||||
\begin{equation}
|
||||
T_{c}(L = \infty) = \frac{2}{\ln (1 + \sqrt{2})} J/k_{B} \approx 2.269 J/k_{B}
|
||||
\end{equation}
|
||||
using linear regression. In Figure \ref{fig:linreg} we find the critical
|
||||
temperatures as function of the inverse lattice size. When the lattice size increase
|
||||
toward infinity, $1/L$ goes toward zero, we find the intercept which gives us an
|
||||
estimated value of the critical temperature for a lattice of infinite size.
|
||||
|
||||
% Critical temp regression figure
|
||||
\begin{figure}[H]
|
||||
|
||||
Reference in New Issue
Block a user