Missing estimate of speed-up and critical temperatures in table.
This commit is contained in:
@@ -40,12 +40,15 @@ the spin up as visualized in Figure \ref{fig:tikz_neighbor}.
|
||||
Using the values estimated for the $2 \times 2$ case, found in \ref{tab:lattice_config},
|
||||
we find the partition function
|
||||
\begin{align*}
|
||||
Z &= 1 \cdot e^{-\beta (-8J)} + 4 \cdot e^{-\beta (0)} + 4 \cdot e^{-\beta (0)} + 2 \cdot e^{-\beta (8J)} \\
|
||||
& \quad + 4 \cdot e^{-\beta (0)} 1 \cdot e^{-\beta (-8J)} \\
|
||||
Z &= 1 \cdot e^{-\beta (-8J)} + 4 \cdot e^{-\beta (0)} + 4 \cdot e^{-\beta (0)} \\
|
||||
& \quad + 2 \cdot e^{-\beta (8J)} + 4 \cdot e^{-\beta (0)} 1 \cdot e^{-\beta (-8J)} \\
|
||||
&= 2e^{8 \beta J} + 2e^{-8 \beta J} + 12.
|
||||
\end{align*}
|
||||
We rewrite the expression using the identity $\cosh(8 \beta J) = 1/2 \big( e^{8 \beta J} + e^{-8 \beta J})$,
|
||||
and get
|
||||
We rewrite the expression using the identity
|
||||
\begin{align*}
|
||||
\cosh(8 \beta J) &= 1/2 \big( e^{8 \beta J} + e^{-8 \beta J})
|
||||
\end{align*}
|
||||
and find
|
||||
\begin{align*}
|
||||
z &= 4 \cosh (8 \beta J) + 12 \ .
|
||||
\end{align*}
|
||||
@@ -55,12 +58,10 @@ and get
|
||||
For a linear function of a stochastic random variable $X$, with a known probability
|
||||
distribution, the expected value of $x$ is given by
|
||||
\begin{align*}
|
||||
\mathbb{E}(aX + b) &= a \cdot \mathbb{E}(X) + b & \text{\cite[p. 131]{springer:2012:modernstat}}
|
||||
\langle aX + b \rangle &= a \cdot \langle X \rangle + b & \text{\cite[p. 131]{springer:2012:modernstat}}
|
||||
\end{align*}
|
||||
In our case the discrete random variable is the spin configuration, and we want
|
||||
to find the expected value of the function $E(\mathbf{s})$. Continuing, we will
|
||||
use the notation $\langle E \rangle$ for the expectation value of a given variable,
|
||||
in this case $E$.
|
||||
to find the expected value of the function $E(\mathbf{s})$.
|
||||
|
||||
Both energy per spin and magnetization per spin are functions of $\mathbf{s}$.
|
||||
In addition, the number of spins is given as a constant for each lattice. We can
|
||||
@@ -75,9 +76,10 @@ The same applies to magnetization per spin
|
||||
\begin{align*}
|
||||
\langle |m| \rangle = \frac{1}{N} \sum_{i=1}^{N} |M(s_{i})| p(s_{i} \ | \ T) \ .
|
||||
\end{align*}
|
||||
Continuing with the expectation values for a $2 \times 2$ lattice, excluding the terms which give zero we get
|
||||
Continuing with the expectation values for a $2 \times 2$ lattice, excluding the terms which result in zero, we get
|
||||
\begin{align*}
|
||||
\langle E \rangle &= (-8J) \cdot \frac{1}{Z} e^{8 \beta J} + 2 \cdot (8J) \cdot \frac{1}{Z} e^{-8 \beta J} + (-8J) \cdot \frac{1}{Z} e^{8 \beta J} \\
|
||||
\langle E \rangle &= (-8J) \cdot \frac{1}{Z} e^{8 \beta J} + 2 \cdot (8J) \cdot \frac{1}{Z} e^{-8 \beta J} \\
|
||||
& \quad + (-8J) \cdot \frac{1}{Z} e^{8 \beta J} \\
|
||||
&= \frac{16J}{Z} \big(e^{-8 \beta J} - e^{8 \beta J}) \\
|
||||
&= -\frac{32J \sinh(8 \beta J)}{4(\cosh(8 \beta J) + 3)} \\
|
||||
&= -\frac{8J \sinh(8 \beta J)}{\cosh(8 \beta J) + 3} \ ,
|
||||
@@ -90,9 +92,10 @@ and
|
||||
&= \frac{4 (2e^{8 \beta J} + 4)}{4(\cosh(8 \beta J) + 3)} \\
|
||||
&= \frac{2(e^{8 \beta J} + 2)}{\cosh(8 \beta J) + 3} \ .
|
||||
\end{align*}
|
||||
The squared function
|
||||
The squared energy function
|
||||
\begin{align*}
|
||||
\langle E^{2} \rangle &= (-8J)^{2} \cdot \frac{1}{Z} e^{8 \beta J} + 2 \cdot (8J)^{2} \cdot \frac{1}{Z} e^{-8 \beta J} + (-8J)^{2} \cdot \frac{1}{Z} e^{8 \beta J} \\
|
||||
\langle E^{2} \rangle &= (-8J)^{2} \cdot \frac{1}{Z} e^{8 \beta J} + 2 \cdot (8J)^{2} \cdot \frac{1}{Z} e^{-8 \beta J} \\
|
||||
& \quad + (-8J)^{2} \cdot \frac{1}{Z} e^{8 \beta J} \\
|
||||
&= \frac{128J^{2}}{Z} \big(e^{8 \beta J} + e^{-8 \beta J} \big) \\
|
||||
&= \frac{128J^{2} \cosh(8 \beta J)}{4(\cosh(8 \beta J) + 3)} \\
|
||||
&= \frac{64J^{2} \cosh(8 \beta J)}{\cosh(8 \beta J) + 3} \ ,
|
||||
@@ -116,6 +119,7 @@ and
|
||||
&= \frac{4(e^{8 \beta J} + 2)^{2}}{(\cosh(8 \beta J) + 3)^{2}} \ .
|
||||
\end{align*}
|
||||
|
||||
|
||||
\section{Heat capacity and magnetic susceptibility}\label{sec:heat_susceptibility}
|
||||
To find the heat capacity in Eq. \ref{eq:heat_capacity}, we normalize to heat
|
||||
capacity per spin
|
||||
@@ -149,8 +153,9 @@ and the variance of the total magnetization is given by
|
||||
\mathbb{V}(M) &= \mathbb{E}(M^{2}) - [\mathbb{E}(|M|)]^{2} \\
|
||||
&= \frac{8e^{8 \beta J} + 8}{\cosh(8 \beta J) + 3} - \frac{4(e^{8 \beta J} + 2)^{2}}{(\cosh(8 \beta J) + 3)^{2}} \\
|
||||
&= \frac{(8(e^{8 \beta J} + 1)) \cdot (\cosh(8 \beta J) + 3) - 4(e^{8 \beta J} + 2)^{2}}{(\cosh(8 \beta J) + 3)^{2}} \\
|
||||
&= \frac{4(e^{8 \beta J} + 1) \cdot (e^{8 \beta J} + e^{-8 \beta J}) + 24(e^{8 \beta J} + 1) - 4(e^{8 \beta J} + 1)^{2}}{(\cosh(8 \beta J) + 3)^{2}} \\
|
||||
&= \frac{4e^{2(8 \beta J)} + 4e^{8 \beta J} 4e^{0} + 4e^{-8 \beta J} 24e^{8 \beta J} + 24 - 4e^{2(8 \beta J)} - 16e^{8 \beta J} - 16}{(\cosh(8 \beta J) + 3)^{2}} \\
|
||||
&= \frac{4(e^{8 \beta J} + 1) \cdot (e^{8 \beta J} + e^{-8 \beta J})}{(\cosh(8 \beta J) + 3)^{2}} \\
|
||||
& \quad + \frac{24(e^{8 \beta J} + 1) - 4(e^{8 \beta J} + 1)^{2}}{(\cosh(8 \beta J) + 3)^{2}}\\
|
||||
% &= \frac{4e^{2(8 \beta J)} + 4e^{8 \beta J} 4e^{0} + 4e^{-8 \beta J} 24e^{8 \beta J} + 24 - 4e^{2(8 \beta J)} - 16e^{8 \beta J} - 16}{(\cosh(8 \beta J) + 3)^{2}} \\
|
||||
&= \frac{4(3e^{8 \beta J} + e^{-8 \beta J} + 3)}{(\cosh(8 \beta J) + 3)^{2}} \ .
|
||||
\end{align*}
|
||||
We find the heat capacity
|
||||
@@ -181,29 +186,30 @@ where the five distinct values are $\Delta E = \{-16J, -8J, 0, 8J, 16J\}$.
|
||||
|
||||
|
||||
\section{Additional results}\label{sec:additional_results}
|
||||
Results of 1 million MC cycles.
|
||||
\begin{figure}
|
||||
We also did the phase transition experiment using 1 million MC cycles. In Figure \ref{fig:phase_energy_1M}
|
||||
we show expected energy per spin, and in Figure \ref{fig:phase_magnetization_1M}
|
||||
expected magnetization per spin.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/10M/energy.pdf}
|
||||
\caption{$\langle \epsilon \rangle$ for $T \in [2.1, 2.4]$, $10^{6}$ MC cycles.}
|
||||
\label{fig:phase_energy_1M}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\end{figure} %
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/10M/magnetization.pdf}
|
||||
\caption{$\langle |m| \rangle$ for $T \in [2.1, 2.4]$, $10^{6}$ MC cycles.}
|
||||
\label{fig:phase_magnetization_1M}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\end{figure} %
|
||||
In Figure \ref{fig:phase_heat_1M} we show heat capacity, and in Figure \ref{fig:phase_susceptibility_1M}
|
||||
the magnetic susceptibility.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/10M/heat_capacity.pdf}
|
||||
\caption{$C_{V}$ for $T \in [2.1, 2.4]$, $10^{6}$ MC cycles.}
|
||||
\label{fig:phase_heat_1M}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\end{figure} %
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/10M/susceptibility.pdf}
|
||||
\caption{$\chi$ for $T \in [2.1, 2.4]$, $10^{6}$ MC cycles.}
|
||||
|
||||
Reference in New Issue
Block a user