Finish report
This commit is contained in:
@@ -249,14 +249,14 @@ For a particle $i$, at time step $j$, the 4th order Runge-Kutta method for a cou
|
||||
\end{align*}
|
||||
where
|
||||
\begin{align*}
|
||||
\mathbf{k}_{\mathbf{r},1,i} &= \mathbf{v}_{i,j} \\
|
||||
\mathbf{k}_{\mathbf{v},1,i} &= \frac{\mathbf{F}_{i}(t_{j}, \mathbf{v}_{i,j}, \mathbf{r}_{i,j})}{m_{i}}, \\
|
||||
\mathbf{k}_{\mathbf{r},2,i} &= \mathbf{v}_{i,j} + h \frac{\mathbf{k}_{\mathbf{v},1,i}}{2}, \\
|
||||
\mathbf{k}_{\mathbf{r},1,i} &= \mathbf{v}_{i,j}, \\
|
||||
\mathbf{k}_{\mathbf{v},2,i} &= \frac{\mathbf{F}_{i}(t_{j}+\frac{h}{2}, \mathbf{v}_{i,j} + h \frac{\mathbf{k}_{\mathbf{v},1,i}}{2}, \mathbf{r}_{i,j} + h \frac{\mathbf{k}_{\mathbf{r},1,i}}{2})}{m_{i}}, \\
|
||||
\mathbf{k}_{\mathbf{r},3,i} &= \mathbf{v}_{i,j} + h \frac{\mathbf{k}_{\mathbf{v},2,i}}{2}, \\
|
||||
\mathbf{k}_{\mathbf{r},2,i} &= \mathbf{v}_{i,j} + h \frac{\mathbf{k}_{\mathbf{v},1,i}}{2}, \\
|
||||
\mathbf{k}_{\mathbf{v},3,i} &= \frac{\mathbf{F}_{i}(t_{j}+\frac{h}{2}, \mathbf{v}_{i,j} + h \frac{\mathbf{k}_{\mathbf{v},2,i}}{2}, \mathbf{r}_{i,j} + h \frac{\mathbf{k}_{\mathbf{r},2,i}}{2})}{m_{i}}, \\
|
||||
\mathbf{k}_{\mathbf{r},4,i} &= \mathbf{v}_{i,j} + h \frac{\mathbf{k}_{\mathbf{v},1,i}}{2}, \\
|
||||
\mathbf{k}_{\mathbf{v},4,i} &= \frac{\mathbf{F}_{i}(t_{j}+h, \mathbf{v}_{i,j} + h \mathbf{k}_{\mathbf{v},3,i}, \mathbf{r}_{i,j} + h \mathbf{k}_{\mathbf{r},3,i})}{m_{i}}.
|
||||
\mathbf{k}_{\mathbf{r},3,i} &= \mathbf{v}_{i,j} + h \frac{\mathbf{k}_{\mathbf{v},2,i}}{2}, \\
|
||||
\mathbf{k}_{\mathbf{v},4,i} &= \frac{\mathbf{F}_{i}(t_{j}+h, \mathbf{v}_{i,j} + h \mathbf{k}_{\mathbf{v},3,i}, \mathbf{r}_{i,j} + h \mathbf{k}_{\mathbf{r},3,i})}{m_{i}} \\
|
||||
\mathbf{k}_{\mathbf{r},4,i} &= \mathbf{v}_{i,j} + h \frac{\mathbf{k}_{\mathbf{v},1,i}}{2}.
|
||||
\end{align*}
|
||||
In order to find each $\mathbf{k}_{\mathbf{r},i}$ and $\mathbf{k}_{\mathbf{v},i}$, we need to first compute all $\mathbf{k}_{\mathbf{r},i}$ and $\mathbf{k}_{\mathbf{v},i}$ for all particles, then update the particle values in order to compute $\mathbf{k}_{\mathbf{r},i+1}$ and $\mathbf{k}_{\mathbf{v},i+1}$.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user