Update document
This commit is contained in:
@@ -2,40 +2,101 @@
|
||||
\graphicspath{{\subfix{../images/}}}
|
||||
|
||||
\begin{document}
|
||||
\section{Methods}
|
||||
\section{Theory and methods}
|
||||
% Problem 1
|
||||
When we study the Penning traps effect on a particle with a charge $q$, we need to consider the forces acting on the particle. We can use Newton's second law \eqref{eq:newton_second} to determine the position of a particle as a function of time. In addition, we introduce the Lorentz force \eqref{eq:lorentz_force}, which describes the force on the particle. The position can be described by %
|
||||
%
|
||||
\begin{equation}\label{eq:newton_lorentz}
|
||||
m \ddot{\mathbf{r}} = (q \mathbf{E} + q \mathbf{v} \times \mathbf{B}).
|
||||
\end{equation}
|
||||
%
|
||||
Using eq. \eqref{eq:newton_lorentz} we derive the differential equations in sec. \ref{sec:eq_motion}, and can rewrite them as
|
||||
\begin{align}
|
||||
\label{eq:motion_x}
|
||||
\ddot{x} - \omega_{0} \dot{y} - \frac{1}{2} \omega_{z}^{2} x &= 0, \\
|
||||
\label{eq:motion_y}
|
||||
\ddot{y} - \omega_{0} \dot{x} - \frac{1}{2} \omega_{z}^{2} y &= 0, \\
|
||||
\label{eq:motion_z}
|
||||
\ddot{z} + \omega_{z}^{2} z &= 0,
|
||||
\end{align} %
|
||||
%
|
||||
We find the general solution for eq. \eqref{eq:motion_z}
|
||||
\begin{equation}\label{eq:eq_general}
|
||||
z(t) = c_{1} e^{i \omega_{z} t} + c_{2} e^{-i \omega_{z} t},
|
||||
\end{equation} %
|
||||
derived in sec. \ref{sec:eq_general}. Continuing, we will use a Calcium ion with a single positive charge. That is, we assume the charge of the particle is $q > 0$.
|
||||
|
||||
% Problem 2
|
||||
Since eq. \eqref{eq:motion_x} and eq. \eqref{eq:motion_y} are coupled, we want to rewrite them as a single differential equation. We derive this in sec. \ref{sec:eq_complex}, and the resulting equation is given by
|
||||
\begin{equation}\label{eq:single_differential}
|
||||
\ddot{f} + i \omega_{0} \dot{f} - \frac{1}{2} \omega_{z}^{2} f = 0.
|
||||
\end{equation}
|
||||
|
||||
% Problem 3
|
||||
Eq. \eqref{eq:single_differential} has a general solution given by
|
||||
\begin{equation}\label{eq:general_solution}
|
||||
f(t) = A_{+}e^{-i(\omega_{+} t + \phi_{+})} + A_{-}e^{-i(\omega_{-} t + \phi_{-})}.
|
||||
\end{equation} %
|
||||
The amplitude $A_{+}$ and $A_{-}$ are positive, the phases $\phi_{+}$ and $\phi_{-}$ are constant, and the rate is given by
|
||||
\begin{equation*}
|
||||
\omega_{\pm} = \frac{\omega_{0} \pm \sqrt{\omega_{0}^{2} - 2 \omega_{z}^{2}}}{2}.
|
||||
\end{equation*}
|
||||
We find the physical coordinates at a given time $t$ using
|
||||
\begin{equation*}
|
||||
x(t) = \text{Re}f(t), \quad y(t) = \text{Im}f(t),
|
||||
\end{equation*} %
|
||||
and eq. \eqref{eq:general_solution}. We can rearrange the right hand side of the derived expression in \ref{sec:eq_coord}, and find the physical coordinates
|
||||
\begin{align}\label{eq:physical_coord}
|
||||
x(t) &= A_{+} \cos(\omega_{+} t + \phi_{+}) + A_{-} \cos(\omega_{-} t + \phi_{-}) \\
|
||||
y(t) &= - A_{+} \sin(\omega_{+} t + \phi_{+}) - A_{-} \sin(\omega_{-} t + \phi_{-})
|
||||
\end{align} %
|
||||
% Problem 4
|
||||
However, to obtain a bound on the particle's movement in the radial direction, we have to ensure that
|
||||
\begin{align*}
|
||||
|f(t)| &= \sqrt{(x(t))^{2} + (y(t))^{2}}. \\
|
||||
\end{align*} %
|
||||
When $t \rightarrow \infty$, the upper and lower limits are
|
||||
\begin{align}
|
||||
R_{+} &= A_{+} + A_{-} \\
|
||||
R_{-} &= |A_{+} - A_{-}|,
|
||||
\end{align}
|
||||
derived in sec. \ref{sec:bounded_solution}.
|
||||
|
||||
% Problem 3
|
||||
To obtain the bounded solution, we need to consider the expression
|
||||
\begin{equation*}
|
||||
\alpha = (\omega_{+} - \omega_{-}) t +( \phi_{+} - \phi_{-}).
|
||||
\end{equation*}
|
||||
When $t \rightarrow \infty$ the constant phases will not affect the expression, we obtain a bounded solution if we consider the rate such that $|f(t)| < \infty$. That is, we need $\omega_{0}^{2} - 2 \omega_{z}^{2}$ in eq. \eqref{eq:angular_rate} to be real.
|
||||
\begin{align*}
|
||||
\omega_{0}^{2} - 2 \omega_{z}^{2} = 0, \quad \omega_{0} > 2 \omega_{z}
|
||||
\end{align*}
|
||||
\begin{equation}\label{eq:angular_rate}
|
||||
\omega_{\pm} = \frac{\omega_{0} \pm \sqrt{\omega_{0}^{2} - 2 \omega_{z}^{2}}}{2}
|
||||
\end{equation}
|
||||
|
||||
We find the solution
|
||||
Physical properties given by newtons second law \eqref{eq:newton_second}
|
||||
|
||||
The particle moves and its position can be determined using newton. where the electric field
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{Units and constants}
|
||||
|
||||
Before continuing, we need to define the units we'll be working with.
|
||||
Since we are working with particles, we need small units to work with so the
|
||||
numbers we are working with aren't so small that they could potentially lead
|
||||
to large round-off errors in our simulation. The units that we will use are listed in Table~\ref{tab:units}.
|
||||
\begin{table}[H]
|
||||
\begin{center}
|
||||
\centering
|
||||
\begin{tabular}[c]{lll}
|
||||
Dimension & Unit & Symbol \\
|
||||
Constant & Value & \\
|
||||
\hline
|
||||
Length & micrometer & $\mu m$ \\
|
||||
Time & microseconds & $\mu s$ \\
|
||||
Mass & atomic mass unit & $u$ \\
|
||||
Charge & the elementary charge & $e$ \\
|
||||
$B_{0}$ & $1.00 T$ & $9.65 \cross 10^{1} \frac{u}{(\mu s) e}$ \\
|
||||
$V_{0}$ & $25.0 mV$ & $2.41 \cross 10^{6} \frac{u (\mu m)^{2}}{(\mu s)^{2} e}$ \\
|
||||
$d$ & $500 \ \mu m$ & \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\caption{The set of units we'll be working with.}\label{tab:units}
|
||||
\caption{Default configuration of the Penning trap, where the value of T and V can be found in table \ref{tab:constants}.}
|
||||
\label{tab:penning_config}
|
||||
\end{table}
|
||||
With these base units, we get
|
||||
\begin{equation}
|
||||
k_e = 1.3893533 \cdot 10^5 \frac{u(\mu m)^3}{(\mu s)^2 e},
|
||||
\end{equation}
|
||||
and we get that the unit for magnetic field strength (Tesla, $T$) and electric potential (Volt, $V$) are
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
T &= 9.64852558 \cdot 10^1 \frac{u}{(\mu s) e} \\
|
||||
V &= 9.64852558 \cdot 10^7 \frac{u (\mu m)^2}{(\mu s)^2 e}. \\
|
||||
\end{split}
|
||||
\label{eq:}
|
||||
\end{equation}
|
||||
|
||||
\subsection{Dealing with a multi--particle system}
|
||||
|
||||
@@ -230,7 +291,6 @@ and would reduce the required amount of loops down to 4.
|
||||
\subsection{Relative error and error convergance rate}
|
||||
|
||||
\subsection{Tools}
|
||||
We used matplotlib
|
||||
The numerical methods implemented in C++, are parallelized using OpenMP \cite{openmp:2018}. We used the Python library matplotlib \cite{hunter:2007:matplotlib} to produce all the plots, and seaborn \cite{waskom:2021:seaborn} to set the theme in the figures.
|
||||
|
||||
%\biblio
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user