Compare commits
9 Commits
coryab/imp
...
9-solve-pr
| Author | SHA1 | Date | |
|---|---|---|---|
| ca774e434f | |||
| b4325ec185 | |||
|
|
5cc45d0d02 | ||
|
|
31eb457614 | ||
|
|
4919f488d4 | ||
|
|
1ab0a1a490 | ||
|
|
fc492b5cbf | ||
|
|
8ebd561f0d | ||
| 3cfee4ebdc |
Binary file not shown.
@@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
% Show that each iteration of the discretized version naturally creates a matrix equation.
|
% Show that each iteration of the discretized version naturally creates a matrix equation.
|
||||||
|
|
||||||
The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we can approximate the value of $f(x_{i}) = f_{i}$. This will result in a set of equations
|
The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we solve for $\vec{v}$. This will result in a set of equations
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
- v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\
|
- v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\
|
||||||
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||||
@@ -10,7 +10,7 @@ The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation
|
|||||||
- v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\
|
- v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
Rearranging the first and last equation, moving terms of known boundary values to the RHS
|
where $v_{i} = v(x_{i})$ and $f_{i} = f(x_{i})$. Rearranging the first and last equation, moving terms of known boundary values to the RHS
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\
|
2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\
|
||||||
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||||
@@ -40,5 +40,5 @@ We now have a number of linear eqations, corresponding to the number of unknown
|
|||||||
\right.
|
\right.
|
||||||
\right]
|
\right]
|
||||||
\end{align*}
|
\end{align*}
|
||||||
where $g_{i} = h^{2} f_{i}$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$.
|
Since the boundary values are equal to $0$ the RHS can be renamed $g_{i} = h^{2} f_{i}$ for all $i$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$.
|
||||||
|
|
||||||
|
|||||||
@@ -1,9 +1,47 @@
|
|||||||
\section*{Problem 6}
|
\section*{Problem 6}
|
||||||
|
|
||||||
\subsection*{a)}
|
\subsection*{a)}
|
||||||
|
|
||||||
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
||||||
|
Renaming the sub-, main-, and supdiagonal of matrix $\boldsymbol{A}$
|
||||||
|
\begin{align*}
|
||||||
|
\vec{a} &= [a_{2}, a_{3}, ..., a_{n-1}, a_{n}] \\
|
||||||
|
\vec{b} &= [b_{1}, b_{2}, b_{3}, ..., b_{n-1}, b_{n}] \\
|
||||||
|
\vec{c} &= [c_{1}, c_{2}, c_{3}, ..., c_{n-1}] \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Following Thomas algorithm for gaussian elimination, we first perform a forward sweep followed by a backward sweep to obtain $\vec{v}$
|
||||||
|
\begin{algorithm}[H]
|
||||||
|
\caption{General algorithm}\label{algo:general}
|
||||||
|
\begin{algorithmic}
|
||||||
|
\Procedure{Forward sweep}{$\vec{a}$, $\vec{b}$, $\vec{c}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{b}$
|
||||||
|
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||||
|
\State $\hat{b}_{1} \leftarrow b_{1}$ \Comment{Handle first element in main diagonal outside loop}
|
||||||
|
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||||
|
\For{$i = 2, 3, ..., n$}
|
||||||
|
\State $d \leftarrow \frac{a_{i}}{\hat{b}_{i-1}}$ \Comment{Calculating common expression}
|
||||||
|
\State $\hat{b}_{i} \leftarrow b_{i} - d \cdot c_{i-1}$
|
||||||
|
\State $\hat{g}_{i} \leftarrow g_{i} - d \cdot \hat{g}_{i-1}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||||
|
\EndProcedure
|
||||||
|
|
||||||
|
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||||
|
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||||
|
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||||
|
\For{$i = n-1, n-2, ..., 1$}
|
||||||
|
\State $v_{i} \leftarrow \frac{\hat{g}_{i} - c_{i} \cdot v_{i+1}}{\hat{b}_{i}}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{v}$
|
||||||
|
\EndProcedure
|
||||||
|
\end{algorithmic}
|
||||||
|
\end{algorithm}
|
||||||
|
|
||||||
|
|
||||||
\subsection*{b)}
|
\subsection*{b)}
|
||||||
|
% Figure out FLOPs
|
||||||
% Figure it out
|
Counting the number of FLOPs for the general algorithm by looking at one procedure at a time.
|
||||||
|
For every iteration of i in forward sweep we have 1 division, 2 multiplications, and 2 subtractions, resulting in $5(n-1)$ FLOPs.
|
||||||
|
For backward sweep we have 1 division, and for every iteration of i we have 1 subtraction, 1 multiplication, and 1 division, resulting in $3(n-1)+1$ FLOPs.
|
||||||
|
Total FLOPs for the general algorithm is $8(n-1)+1$.
|
||||||
@@ -1,3 +1,55 @@
|
|||||||
\section*{Problem 9}
|
\section*{Problem 9}
|
||||||
|
|
||||||
% Show the algorithm, then calculate FLOPs, then link to relevant files
|
\subsection*{a)}
|
||||||
|
% Specialize algorithm
|
||||||
|
The special algorithm does not require the values of all $a_{i}$, $b_{i}$, $c_{i}$.
|
||||||
|
We find the values of $\hat{b}_{i}$ from simplifying the general case
|
||||||
|
\begin{align*}
|
||||||
|
\hat{b}_{i} &= b_{i} - \frac{a_{i} \cdot c_{i-1}}{\hat{b}_{i-1}} \\
|
||||||
|
\hat{b}_{i} &= 2 - \frac{1}{\hat{b}_{i-1}}
|
||||||
|
\end{align*}
|
||||||
|
Calculating the first values to see a pattern
|
||||||
|
\begin{align*}
|
||||||
|
\hat{b}_{1} &= 2 \\
|
||||||
|
\hat{b}_{2} &= 2 - \frac{1}{2} = \frac{3}{2} \\
|
||||||
|
\hat{b}_{3} &= 2 - \frac{1}{\frac{3}{2}} = \frac{4}{3} \\
|
||||||
|
\hat{b}_{4} &= 2 - \frac{1}{\frac{4}{3}} = \frac{5}{4} \\
|
||||||
|
\vdots & \\
|
||||||
|
\hat{b}_{i} &= \frac{i+1}{i} && \text{for $i = 1, 2, ..., n$}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{algorithm}[H]
|
||||||
|
\caption{Special algorithm}\label{algo:special}
|
||||||
|
\begin{algorithmic}
|
||||||
|
\Procedure{Forward sweep}{$\vec{b}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{b}$
|
||||||
|
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||||
|
\State $\hat{b}_{1} \leftarrow 2$ \Comment{Handle first element in main diagonal outside loop}
|
||||||
|
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||||
|
\For{$i = 2, 3, ..., n$}
|
||||||
|
\State $\hat{b}_{i} \leftarrow \frac{i+1}{i}$
|
||||||
|
\State $\hat{g}_{i} \leftarrow g_{i} + \frac{\hat{g}_{i-1}}{\hat{b}_{i-1}}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||||
|
\EndProcedure
|
||||||
|
|
||||||
|
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||||
|
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||||
|
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||||
|
\For{$i = n-1, n-2, ..., 1$}
|
||||||
|
\State $v_{i} \leftarrow \frac{\hat{g}_{i} + v_{i+1}}{\hat{b}_{i}}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{v}$
|
||||||
|
\EndProcedure
|
||||||
|
\end{algorithmic}
|
||||||
|
\end{algorithm}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection*{b)}
|
||||||
|
% Find FLOPs
|
||||||
|
For every iteration of i in forward sweep we have 2 divisions, and 2 additions, resulting in $4(n-1)$ FLOPs.
|
||||||
|
For backward sweep we have 1 division, and for every iteration of i we have 1 addition, and 1 division, resulting in $2(n-1)+1$ FLOPs.
|
||||||
|
Total FLOPs for the special algorithm is $6(n-1)+1$.
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user