Compare commits
14 Commits
coryab/edi
...
9-solve-pr
| Author | SHA1 | Date | |
|---|---|---|---|
| ca774e434f | |||
| b4325ec185 | |||
|
|
5cc45d0d02 | ||
|
|
31eb457614 | ||
|
|
4919f488d4 | ||
|
|
1ab0a1a490 | ||
|
|
fc492b5cbf | ||
|
|
8ebd561f0d | ||
| 3cfee4ebdc | |||
| 6e12f2b050 | |||
| c5c64da196 | |||
| c256d9b1da | |||
| 3d87b400d8 | |||
| d886d3761e |
2
.gitignore
vendored
2
.gitignore
vendored
@@ -41,4 +41,6 @@
|
||||
|
||||
# C++ specifics
|
||||
src/*
|
||||
!src/Makefile
|
||||
!src/*.cpp
|
||||
!src/*.py
|
||||
|
||||
Binary file not shown.
@@ -74,6 +74,9 @@
|
||||
%%
|
||||
%% Don't ask me why, I don't know.
|
||||
|
||||
% custom stuff
|
||||
\graphicspath{{./images/}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\title{Project 1} % self-explanatory
|
||||
|
||||
BIN
latex/images/analytical_solution.pdf
Normal file
BIN
latex/images/analytical_solution.pdf
Normal file
Binary file not shown.
@@ -1,3 +1,11 @@
|
||||
\section*{Problem 2}
|
||||
|
||||
% Write which .cpp/.hpp/.py (using a link?) files are relevant for this and show the plot generated.
|
||||
The code for generating the points and plotting them can be found under.
|
||||
|
||||
Point generator code: https://github.uio.no/FYS3150-G2-203/Project-1/blob/main/src/analyticPlot.cpp
|
||||
|
||||
Plotting code: https://github.uio.no/FYS3150-G2-2023/Project-1/blob/main/src/analyticPlot.py
|
||||
|
||||
Here is the plot of the analytical solution for $u(x)$.
|
||||
|
||||
\includegraphics[scale=.5]{analytical_solution.pdf}
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
% Show that each iteration of the discretized version naturally creates a matrix equation.
|
||||
|
||||
The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we can approximate the value of $f(x_{i}) = f_{i}$. This will result in a set of equations
|
||||
The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we solve for $\vec{v}$. This will result in a set of equations
|
||||
\begin{align*}
|
||||
- v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\
|
||||
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||
@@ -10,7 +10,7 @@ The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation
|
||||
- v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\
|
||||
\end{align*}
|
||||
|
||||
Rearranging the first and last equation, moving terms of known boundary values to the RHS
|
||||
where $v_{i} = v(x_{i})$ and $f_{i} = f(x_{i})$. Rearranging the first and last equation, moving terms of known boundary values to the RHS
|
||||
\begin{align*}
|
||||
2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\
|
||||
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||
@@ -40,5 +40,5 @@ We now have a number of linear eqations, corresponding to the number of unknown
|
||||
\right.
|
||||
\right]
|
||||
\end{align*}
|
||||
where $g_{i} = h^{2} f_{i}$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$.
|
||||
Since the boundary values are equal to $0$ the RHS can be renamed $g_{i} = h^{2} f_{i}$ for all $i$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$.
|
||||
|
||||
|
||||
@@ -1,9 +1,47 @@
|
||||
\section*{Problem 6}
|
||||
|
||||
\subsection*{a)}
|
||||
|
||||
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
||||
Renaming the sub-, main-, and supdiagonal of matrix $\boldsymbol{A}$
|
||||
\begin{align*}
|
||||
\vec{a} &= [a_{2}, a_{3}, ..., a_{n-1}, a_{n}] \\
|
||||
\vec{b} &= [b_{1}, b_{2}, b_{3}, ..., b_{n-1}, b_{n}] \\
|
||||
\vec{c} &= [c_{1}, c_{2}, c_{3}, ..., c_{n-1}] \\
|
||||
\end{align*}
|
||||
|
||||
Following Thomas algorithm for gaussian elimination, we first perform a forward sweep followed by a backward sweep to obtain $\vec{v}$
|
||||
\begin{algorithm}[H]
|
||||
\caption{General algorithm}\label{algo:general}
|
||||
\begin{algorithmic}
|
||||
\Procedure{Forward sweep}{$\vec{a}$, $\vec{b}$, $\vec{c}$}
|
||||
\State $n \leftarrow$ length of $\vec{b}$
|
||||
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||
\State $\hat{b}_{1} \leftarrow b_{1}$ \Comment{Handle first element in main diagonal outside loop}
|
||||
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||
\For{$i = 2, 3, ..., n$}
|
||||
\State $d \leftarrow \frac{a_{i}}{\hat{b}_{i-1}}$ \Comment{Calculating common expression}
|
||||
\State $\hat{b}_{i} \leftarrow b_{i} - d \cdot c_{i-1}$
|
||||
\State $\hat{g}_{i} \leftarrow g_{i} - d \cdot \hat{g}_{i-1}$
|
||||
\EndFor
|
||||
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||
\EndProcedure
|
||||
|
||||
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||
\For{$i = n-1, n-2, ..., 1$}
|
||||
\State $v_{i} \leftarrow \frac{\hat{g}_{i} - c_{i} \cdot v_{i+1}}{\hat{b}_{i}}$
|
||||
\EndFor
|
||||
\Return $\vec{v}$
|
||||
\EndProcedure
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
|
||||
|
||||
\subsection*{b)}
|
||||
|
||||
% Figure it out
|
||||
% Figure out FLOPs
|
||||
Counting the number of FLOPs for the general algorithm by looking at one procedure at a time.
|
||||
For every iteration of i in forward sweep we have 1 division, 2 multiplications, and 2 subtractions, resulting in $5(n-1)$ FLOPs.
|
||||
For backward sweep we have 1 division, and for every iteration of i we have 1 subtraction, 1 multiplication, and 1 division, resulting in $3(n-1)+1$ FLOPs.
|
||||
Total FLOPs for the general algorithm is $8(n-1)+1$.
|
||||
@@ -1,3 +1,55 @@
|
||||
\section*{Problem 9}
|
||||
|
||||
% Show the algorithm, then calculate FLOPs, then link to relevant files
|
||||
\subsection*{a)}
|
||||
% Specialize algorithm
|
||||
The special algorithm does not require the values of all $a_{i}$, $b_{i}$, $c_{i}$.
|
||||
We find the values of $\hat{b}_{i}$ from simplifying the general case
|
||||
\begin{align*}
|
||||
\hat{b}_{i} &= b_{i} - \frac{a_{i} \cdot c_{i-1}}{\hat{b}_{i-1}} \\
|
||||
\hat{b}_{i} &= 2 - \frac{1}{\hat{b}_{i-1}}
|
||||
\end{align*}
|
||||
Calculating the first values to see a pattern
|
||||
\begin{align*}
|
||||
\hat{b}_{1} &= 2 \\
|
||||
\hat{b}_{2} &= 2 - \frac{1}{2} = \frac{3}{2} \\
|
||||
\hat{b}_{3} &= 2 - \frac{1}{\frac{3}{2}} = \frac{4}{3} \\
|
||||
\hat{b}_{4} &= 2 - \frac{1}{\frac{4}{3}} = \frac{5}{4} \\
|
||||
\vdots & \\
|
||||
\hat{b}_{i} &= \frac{i+1}{i} && \text{for $i = 1, 2, ..., n$}
|
||||
\end{align*}
|
||||
|
||||
|
||||
\begin{algorithm}[H]
|
||||
\caption{Special algorithm}\label{algo:special}
|
||||
\begin{algorithmic}
|
||||
\Procedure{Forward sweep}{$\vec{b}$}
|
||||
\State $n \leftarrow$ length of $\vec{b}$
|
||||
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||
\State $\hat{b}_{1} \leftarrow 2$ \Comment{Handle first element in main diagonal outside loop}
|
||||
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||
\For{$i = 2, 3, ..., n$}
|
||||
\State $\hat{b}_{i} \leftarrow \frac{i+1}{i}$
|
||||
\State $\hat{g}_{i} \leftarrow g_{i} + \frac{\hat{g}_{i-1}}{\hat{b}_{i-1}}$
|
||||
\EndFor
|
||||
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||
\EndProcedure
|
||||
|
||||
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||
\For{$i = n-1, n-2, ..., 1$}
|
||||
\State $v_{i} \leftarrow \frac{\hat{g}_{i} + v_{i+1}}{\hat{b}_{i}}$
|
||||
\EndFor
|
||||
\Return $\vec{v}$
|
||||
\EndProcedure
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
|
||||
|
||||
\subsection*{b)}
|
||||
% Find FLOPs
|
||||
For every iteration of i in forward sweep we have 2 divisions, and 2 additions, resulting in $4(n-1)$ FLOPs.
|
||||
For backward sweep we have 1 division, and for every iteration of i we have 1 addition, and 1 division, resulting in $2(n-1)+1$ FLOPs.
|
||||
Total FLOPs for the special algorithm is $6(n-1)+1$.
|
||||
|
||||
|
||||
@@ -1,10 +1,15 @@
|
||||
CC=g++
|
||||
|
||||
all: simpleFile
|
||||
.PHONY: clean
|
||||
|
||||
all: simpleFile analyticPlot
|
||||
|
||||
simpleFile: simpleFile.o
|
||||
$(CC) -o $@ $^
|
||||
|
||||
analyticPlot: analyticPlot.o
|
||||
$(CC) -o $@ $^
|
||||
|
||||
%.o: %.cpp
|
||||
$(CC) -c $< -o $@
|
||||
|
||||
|
||||
@@ -6,17 +6,36 @@
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
|
||||
#define RANGE 1000
|
||||
#define FILENAME "analytical_solution.txt"
|
||||
|
||||
double u(double x);
|
||||
void generate_range(std::vector<double> &vec, double start, double stop, int n);
|
||||
void write_analytical_solution(std::string filename, int n);
|
||||
|
||||
int main() {
|
||||
int n = 1000;
|
||||
write_analytical_solution(FILENAME, RANGE);
|
||||
|
||||
return 0;
|
||||
};
|
||||
|
||||
double u(double x) {
|
||||
return 1 - (1 - exp(-10))*x - exp(-10*x);
|
||||
};
|
||||
|
||||
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
|
||||
double step = (stop - start) / n;
|
||||
|
||||
for (int i = 0; i <= vec.size(); i++) {
|
||||
vec[i] = i * step;
|
||||
}
|
||||
}
|
||||
|
||||
void write_analytical_solution(std::string filename, int n) {
|
||||
std::vector<double> x(n), y(n);
|
||||
generate_range(x, 0.0, 1.0, n);
|
||||
|
||||
// Set up output file and strem
|
||||
std::string filename = "datapoints.txt";
|
||||
std::ofstream outfile;
|
||||
outfile.open(filename);
|
||||
|
||||
@@ -32,21 +51,5 @@ int main() {
|
||||
<< std::endl;
|
||||
}
|
||||
outfile.close();
|
||||
|
||||
return 0;
|
||||
};
|
||||
|
||||
double u(double x) {
|
||||
double result;
|
||||
|
||||
result = 1 - (1 - exp(-10))*x - exp(-10*x);
|
||||
return result;
|
||||
};
|
||||
|
||||
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
|
||||
double step = (stop - start) / n;
|
||||
|
||||
for (int i = 0; i <= vec.size(); i++) {
|
||||
vec[i] = i * step;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,17 +1,19 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
x = []
|
||||
y = []
|
||||
v = []
|
||||
with open('testdata.txt') as f:
|
||||
for line in f:
|
||||
a, b, c = line.strip().split()
|
||||
x.append(float(a))
|
||||
# y.append(float(b))
|
||||
v.append(float(c))
|
||||
def main():
|
||||
FILENAME = "analytical_solution.pdf"
|
||||
x = []
|
||||
v = []
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(x, v)
|
||||
plt.show()
|
||||
# plt.savefig("main.png")
|
||||
with open('analytical_solution.txt') as f:
|
||||
for line in f:
|
||||
a, b = line.strip().split()
|
||||
x.append(float(a))
|
||||
v.append(float(b))
|
||||
|
||||
plt.plot(x, v)
|
||||
plt.savefig(FILENAME)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user