10 Commits

Author SHA1 Message Date
Janita Willumsen
4919f488d4 Finished exercise 6 2023-09-08 22:14:52 +02:00
Janita Willumsen
1ab0a1a490 More stuff 2023-09-08 13:22:31 +02:00
Janita Willumsen
fc492b5cbf Stuff 2023-09-08 13:18:39 +02:00
Janita Willumsen
8ebd561f0d Fixed the explanation for renaming f 2023-09-08 13:15:32 +02:00
3cfee4ebdc Merge pull request #18 from FYS3150-G2-2023/coryab/implement-problem-2
Coryab/implement problem 2
2023-09-08 13:13:42 +02:00
6e12f2b050 Edit latex file 2023-09-08 13:13:10 +02:00
c5c64da196 Implement the program for problem 2 2023-09-08 12:46:21 +02:00
c256d9b1da Add rules 2023-09-08 12:45:55 +02:00
3d87b400d8 Modify gitignore 2023-09-08 12:45:25 +02:00
d886d3761e Merge pull request #17 from FYS3150-G2-2023/coryab/edit-problem-1
Coryab/edit problem 1
2023-09-08 12:11:27 +02:00
10 changed files with 100 additions and 40 deletions

2
.gitignore vendored
View File

@@ -41,4 +41,6 @@
# C++ specifics # C++ specifics
src/* src/*
!src/Makefile
!src/*.cpp !src/*.cpp
!src/*.py

Binary file not shown.

View File

@@ -74,6 +74,9 @@
%% %%
%% Don't ask me why, I don't know. %% Don't ask me why, I don't know.
% custom stuff
\graphicspath{{./images/}}
\begin{document} \begin{document}
\title{Project 1} % self-explanatory \title{Project 1} % self-explanatory

Binary file not shown.

View File

@@ -1,3 +1,11 @@
\section*{Problem 2} \section*{Problem 2}
% Write which .cpp/.hpp/.py (using a link?) files are relevant for this and show the plot generated. The code for generating the points and plotting them can be found under.
Point generator code: https://github.uio.no/FYS3150-G2-203/Project-1/blob/main/src/analyticPlot.cpp
Plotting code: https://github.uio.no/FYS3150-G2-2023/Project-1/blob/main/src/analyticPlot.py
Here is the plot of the analytical solution for $u(x)$.
\includegraphics[scale=.5]{analytical_solution.pdf}

View File

@@ -2,7 +2,7 @@
% Show that each iteration of the discretized version naturally creates a matrix equation. % Show that each iteration of the discretized version naturally creates a matrix equation.
The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we can approximate the value of $f(x_{i}) = f_{i}$. This will result in a set of equations The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we solve for $\vec{v}$. This will result in a set of equations
\begin{align*} \begin{align*}
- v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\ - v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\ - v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
@@ -10,7 +10,7 @@ The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation
- v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\ - v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\
\end{align*} \end{align*}
Rearranging the first and last equation, moving terms of known boundary values to the RHS where $v_{i} = v(x_{i})$ and $f_{i} = f(x_{i})$. Rearranging the first and last equation, moving terms of known boundary values to the RHS
\begin{align*} \begin{align*}
2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\ 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\ - v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
@@ -40,5 +40,5 @@ We now have a number of linear eqations, corresponding to the number of unknown
\right. \right.
\right] \right]
\end{align*} \end{align*}
where $g_{i} = h^{2} f_{i}$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$. Since the boundary values are equal to $0$ the RHS can be renamed $g_{i} = h^{2} f_{i}$ for all $i$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$.

View File

@@ -1,9 +1,46 @@
\section*{Problem 6} \section*{Problem 6}
\subsection*{a)} \subsection*{a)}
% Use Gaussian elimination, and then use backwards substitution to solve the equation % Use Gaussian elimination, and then use backwards substitution to solve the equation
Renaming the sub-, main-, and supdiagonal of matrix $\boldsymbol{A}$
\begin{align*}
\vec{a} &= [a_{2}, a_{3}, ..., a_{n-1}, a_{n}] \\
\vec{b} &= [b_{1}, b_{2}, b_{3}, ..., b_{n-1}, b_{n}] \\
\vec{c} &= [c_{1}, c_{2}, c_{3}, ..., c_{n-1}] \\
\end{align*}
Following Thomas algorithm for gaussian elimination, we first perform a forward sweep followed by a backward sweep to obtain $\vec{v}$
\begin{algorithm}[H]
\caption{General algorithm}\label{algo:general}
\begin{algorithmic}
\Procedure{Forward sweep}{$\vec{a}$, $\vec{b}$, $\vec{c}$}
\State $n \leftarrow$ length of $\vec{b}$
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
\State $\hat{b}_{1} \leftarrow b_{1}$ \Comment{Handle first element in main diagonal outside loop}
\For{$i = 2, 3, ..., n$}
\State $d \leftarrow \frac{a_{i}}{\hat{b}_{i-1}}$ \Comment{Calculating common expression}
\State $\hat{b}_{i} \leftarrow b_{i} - d \cdot c_{i-1}$
\State $\hat{g}_{i} \leftarrow g_{i} - d \cdot \hat{g}_{i-1}$
\EndFor
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
\EndProcedure
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
\State $n \leftarrow$ length of $\vec{\hat{b}}$
\State $\vec{v} \leftarrow$ vector of length $n$.
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
\For{$i = n-1, n-2, ..., 1$}
\State $v_{i} \leftarrow \frac{\hat{g}_{i} - c_{i} \cdot v_{i+1}}{\hat{b}_{i}}$
\EndFor
\Return $\vec{v}$
\EndProcedure
\end{algorithmic}
\end{algorithm}
\subsection*{b)} \subsection*{b)}
% Figure out FLOPs
% Figure it out Counting the number of FLOPs for the general algorithm by looking at one procedure at a time.
For every iteration of i in forward sweep we have 1 division, 2 multiplications, and 2 subtractions, resulting in $5(n-1)$ FLOPs.
For backward sweep we have 1 division, and for every iteration of i we have 1 subtraction, 1 multiplication, and 1 division, resulting in $3(n-1)+1$ FLOPs.
Total FLOPs for the general algorithm is $8(n-1)+1$.

View File

@@ -1,10 +1,15 @@
CC=g++ CC=g++
all: simpleFile .PHONY: clean
all: simpleFile analyticPlot
simpleFile: simpleFile.o simpleFile: simpleFile.o
$(CC) -o $@ $^ $(CC) -o $@ $^
analyticPlot: analyticPlot.o
$(CC) -o $@ $^
%.o: %.cpp %.o: %.cpp
$(CC) -c $< -o $@ $(CC) -c $< -o $@

View File

@@ -6,17 +6,36 @@
#include <fstream> #include <fstream>
#include <iomanip> #include <iomanip>
#define RANGE 1000
#define FILENAME "analytical_solution.txt"
double u(double x); double u(double x);
void generate_range(std::vector<double> &vec, double start, double stop, int n); void generate_range(std::vector<double> &vec, double start, double stop, int n);
void write_analytical_solution(std::string filename, int n);
int main() { int main() {
int n = 1000; write_analytical_solution(FILENAME, RANGE);
return 0;
};
double u(double x) {
return 1 - (1 - exp(-10))*x - exp(-10*x);
};
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
double step = (stop - start) / n;
for (int i = 0; i <= vec.size(); i++) {
vec[i] = i * step;
}
}
void write_analytical_solution(std::string filename, int n) {
std::vector<double> x(n), y(n); std::vector<double> x(n), y(n);
generate_range(x, 0.0, 1.0, n); generate_range(x, 0.0, 1.0, n);
// Set up output file and strem // Set up output file and strem
std::string filename = "datapoints.txt";
std::ofstream outfile; std::ofstream outfile;
outfile.open(filename); outfile.open(filename);
@@ -32,21 +51,5 @@ int main() {
<< std::endl; << std::endl;
} }
outfile.close(); outfile.close();
return 0;
};
double u(double x) {
double result;
result = 1 - (1 - exp(-10))*x - exp(-10*x);
return result;
};
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
double step = (stop - start) / n;
for (int i = 0; i <= vec.size(); i++) {
vec[i] = i * step;
}
} }

View File

@@ -1,17 +1,19 @@
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
x = [] def main():
y = [] FILENAME = "analytical_solution.pdf"
v = [] x = []
with open('testdata.txt') as f: v = []
for line in f:
a, b, c = line.strip().split()
x.append(float(a))
# y.append(float(b))
v.append(float(c))
fig, ax = plt.subplots() with open('analytical_solution.txt') as f:
ax.plot(x, v) for line in f:
plt.show() a, b = line.strip().split()
# plt.savefig("main.png") x.append(float(a))
v.append(float(b))
plt.plot(x, v)
plt.savefig(FILENAME)
if __name__ == "__main__":
main()