Compare commits

..

20 commits

Author SHA1 Message Date
Janita Willumsen
4919f488d4 Finished exercise 6 2023-09-08 22:14:52 +02:00
Janita Willumsen
1ab0a1a490 More stuff 2023-09-08 13:22:31 +02:00
Janita Willumsen
fc492b5cbf Stuff 2023-09-08 13:18:39 +02:00
Janita Willumsen
8ebd561f0d Fixed the explanation for renaming f 2023-09-08 13:15:32 +02:00
3cfee4ebdc Merge pull request #18 from FYS3150-G2-2023/coryab/implement-problem-2
Coryab/implement problem 2
2023-09-08 13:13:42 +02:00
6e12f2b050
Edit latex file 2023-09-08 13:13:10 +02:00
c5c64da196
Implement the program for problem 2 2023-09-08 12:46:21 +02:00
c256d9b1da
Add rules 2023-09-08 12:45:55 +02:00
3d87b400d8
Modify gitignore 2023-09-08 12:45:25 +02:00
d886d3761e Merge pull request #17 from FYS3150-G2-2023/coryab/edit-problem-1
Coryab/edit problem 1
2023-09-08 12:11:27 +02:00
4e633d13b5
Merge branch 'main' into coryab/edit-problem-1 2023-09-08 12:11:12 +02:00
400e8a29df
Edit problem 1 and add problem 3 2023-09-08 12:08:02 +02:00
996b99fca3
Modify .gitignore 2023-09-08 12:07:06 +02:00
Janita Willumsen
271e3dd944 Made changes to preamble affecting warning of revtex and use of amsmath 2023-09-08 09:41:58 +02:00
Janita Willumsen
c42426847d Finished exercise 4 2023-09-08 09:39:53 +02:00
Janita Willumsen
13cbbc4e0e Add build file extensions, included .bbl 2023-09-08 09:36:40 +02:00
e407ce073e
Add Makefile 2023-09-07 14:39:35 +02:00
f2f50ed3e4
Merge branch 'main' of github.uio.no:FYS3150-G2-2023/Project-1 2023-09-07 14:39:06 +02:00
91cc7583af
Add problem 3 2023-09-07 14:38:46 +02:00
6f5d71e1a4 Merge pull request #16 from FYS3150-G2-2023/7-solve-problem-7
7 solve problem 7
2023-09-07 14:36:25 +02:00
12 changed files with 204 additions and 41 deletions

8
.gitignore vendored
View file

@ -36,3 +36,11 @@
*.log
*.out
*.bib
*.synctex.gz
*.bbl
# C++ specifics
src/*
!src/Makefile
!src/*.cpp
!src/*.py

Binary file not shown.

View file

@ -1,7 +1,9 @@
\documentclass[english,notitlepage]{revtex4-1} % defines the basic parameters of the document
%For preview: skriv i terminal: latexmk -pdf -pvc filnavn
% Silence warning of revtex4-1
\usepackage{silence}
\WarningFilter{revtex4-1}{Repair the float}
% if you want a single-column, remove reprint
@ -13,7 +15,7 @@
%% I recommend downloading TeXMaker, because it includes a large library of the most common packages.
\usepackage{physics,amssymb} % mathematical symbols (physics imports amsmath)
\include{amsmath}
\usepackage{amsmath}
\usepackage{graphicx} % include graphics such as plots
\usepackage{xcolor} % set colors
\usepackage{hyperref} % automagic cross-referencing (this is GODLIKE)
@ -72,6 +74,9 @@
%%
%% Don't ask me why, I don't know.
% custom stuff
\graphicspath{{./images/}}
\begin{document}
\title{Project 1} % self-explanatory

Binary file not shown.

View file

@ -1,5 +1,14 @@
\section*{Problem 1}
First, we rearrange the equation.
\begin{align*}
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\
\frac{d^2u}{dx^2} &= -100 e^{-10x} \\
\end{align*}
Now we find $u(x)$.
% Do the double integral
\begin{align*}
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2 \\
@ -10,7 +19,7 @@
&= -e^{-10x} + c_1 x + c_2
\end{align*}
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
Using the boundary conditions, we can find $c_1$ and $c_2$
\begin{align*}
u(0) &= 0 \\

View file

@ -1,3 +1,11 @@
\section*{Problem 2}
% Write which .cpp/.hpp/.py (using a link?) files are relevant for this and show the plot generated.
The code for generating the points and plotting them can be found under.
Point generator code: https://github.uio.no/FYS3150-G2-203/Project-1/blob/main/src/analyticPlot.cpp
Plotting code: https://github.uio.no/FYS3150-G2-2023/Project-1/blob/main/src/analyticPlot.py
Here is the plot of the analytical solution for $u(x)$.
\includegraphics[scale=.5]{analytical_solution.pdf}

View file

@ -1,4 +1,37 @@
\section*{Problem 3}
% Show how it's derived and where we found the derivation.
To derive the discretized version of the Poisson equation, we first need
the Taylor expansion for $u(x)$ around $x$ for $x + h$ and $x - h$.
\begin{align*}
u(x+h) &= u(x) + u'(x) h + \frac{1}{2} u''(x) h^2 + \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
\end{align*}
\begin{align*}
u(x-h) &= u(x) - u'(x) h + \frac{1}{2} u''(x) h^2 - \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
\end{align*}
If we add the equations above, we get this new equation:
\begin{align*}
u(x+h) + u(x-h) &= 2 u(x) + u''(x) h^2 + \mathcal{O}(h^4) \\
u(x+h) - 2 u(x) + u(x-h) + \mathcal{O}(h^4) &= u''(x) h^2 \\
u''(x) &= \frac{u(x+h) - 2 u(x) + u(x-h)}{h^2} + \mathcal{O}(h^2) \\
u_i''(x) &= \frac{u_{i+1} - 2 u_i + u_{i-1}}{h^2} + \mathcal{O}(h^2) \\
\end{align*}
We can then replace $\frac{d^2u}{dx^2}$ with the RHS (right-hand side) of the equation:
\begin{align*}
- \frac{d^2u}{dx^2} &= f(x) \\
\frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} + \mathcal{O}(h^2) &= f_i \\
\end{align*}
And lastly, we leave out $\mathcal{O}(h^2)$ and change $u_i$ to $v_i$ to
differentiate between the exact solution and the approximate solution,
and get the discretized version of the equation:
\begin{align*}
\frac{ - v_{i+1} + 2 v_i - v_{i-1}}{h^2} &= 100 e^{-10x_i} \\
\end{align*}

View file

@ -1,3 +1,44 @@
\section*{Problem 4}
% Show that each iteration of the discretized version naturally creates a matrix equation.
The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we solve for $\vec{v}$. This will result in a set of equations
\begin{align*}
- v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
\vdots & \\
- v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\
\end{align*}
where $v_{i} = v(x_{i})$ and $f_{i} = f(x_{i})$. Rearranging the first and last equation, moving terms of known boundary values to the RHS
\begin{align*}
2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
\vdots & \\
- v_{m-2} + 2 v_{m-1} &= h^{2} \cdot f_{m-1} + v_{m} \\
\end{align*}
We now have a number of linear eqations, corresponding to the number of unknown values, which can be represented as an augmented matrix
\begin{align*}
\left[
\begin{matrix}
2v_{1} & -v_{2} & 0 & \dots & 0 \\
-v_{1} & 2v_{2} & -v_{3} & 0 & \\
0 & -v_{2} & 2v_{3} & -v_{4} & \\
\vdots & & & \ddots & \vdots \\
0 & & & -v_{m-2} & 2v_{m-1} \\
\end{matrix}
\left|
\,
\begin{matrix}
g_{1} \\
g_{2} \\
g_{2} \\
\vdots \\
g_{m-1} \\
\end{matrix}
\right.
\right]
\end{align*}
Since the boundary values are equal to $0$ the RHS can be renamed $g_{i} = h^{2} f_{i}$ for all $i$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$.

View file

@ -1,9 +1,46 @@
\section*{Problem 6}
\subsection*{a)}
% Use Gaussian elimination, and then use backwards substitution to solve the equation
Renaming the sub-, main-, and supdiagonal of matrix $\boldsymbol{A}$
\begin{align*}
\vec{a} &= [a_{2}, a_{3}, ..., a_{n-1}, a_{n}] \\
\vec{b} &= [b_{1}, b_{2}, b_{3}, ..., b_{n-1}, b_{n}] \\
\vec{c} &= [c_{1}, c_{2}, c_{3}, ..., c_{n-1}] \\
\end{align*}
Following Thomas algorithm for gaussian elimination, we first perform a forward sweep followed by a backward sweep to obtain $\vec{v}$
\begin{algorithm}[H]
\caption{General algorithm}\label{algo:general}
\begin{algorithmic}
\Procedure{Forward sweep}{$\vec{a}$, $\vec{b}$, $\vec{c}$}
\State $n \leftarrow$ length of $\vec{b}$
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
\State $\hat{b}_{1} \leftarrow b_{1}$ \Comment{Handle first element in main diagonal outside loop}
\For{$i = 2, 3, ..., n$}
\State $d \leftarrow \frac{a_{i}}{\hat{b}_{i-1}}$ \Comment{Calculating common expression}
\State $\hat{b}_{i} \leftarrow b_{i} - d \cdot c_{i-1}$
\State $\hat{g}_{i} \leftarrow g_{i} - d \cdot \hat{g}_{i-1}$
\EndFor
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
\EndProcedure
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
\State $n \leftarrow$ length of $\vec{\hat{b}}$
\State $\vec{v} \leftarrow$ vector of length $n$.
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
\For{$i = n-1, n-2, ..., 1$}
\State $v_{i} \leftarrow \frac{\hat{g}_{i} - c_{i} \cdot v_{i+1}}{\hat{b}_{i}}$
\EndFor
\Return $\vec{v}$
\EndProcedure
\end{algorithmic}
\end{algorithm}
\subsection*{b)}
% Figure it out
% Figure out FLOPs
Counting the number of FLOPs for the general algorithm by looking at one procedure at a time.
For every iteration of i in forward sweep we have 1 division, 2 multiplications, and 2 subtractions, resulting in $5(n-1)$ FLOPs.
For backward sweep we have 1 division, and for every iteration of i we have 1 subtraction, 1 multiplication, and 1 division, resulting in $3(n-1)+1$ FLOPs.
Total FLOPs for the general algorithm is $8(n-1)+1$.

17
src/Makefile Normal file
View file

@ -0,0 +1,17 @@
CC=g++
.PHONY: clean
all: simpleFile analyticPlot
simpleFile: simpleFile.o
$(CC) -o $@ $^
analyticPlot: analyticPlot.o
$(CC) -o $@ $^
%.o: %.cpp
$(CC) -c $< -o $@
clean:
rm *.o

View file

@ -6,17 +6,36 @@
#include <fstream>
#include <iomanip>
#define RANGE 1000
#define FILENAME "analytical_solution.txt"
double u(double x);
void generate_range(std::vector<double> &vec, double start, double stop, int n);
void write_analytical_solution(std::string filename, int n);
int main() {
int n = 1000;
write_analytical_solution(FILENAME, RANGE);
return 0;
};
double u(double x) {
return 1 - (1 - exp(-10))*x - exp(-10*x);
};
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
double step = (stop - start) / n;
for (int i = 0; i <= vec.size(); i++) {
vec[i] = i * step;
}
}
void write_analytical_solution(std::string filename, int n) {
std::vector<double> x(n), y(n);
generate_range(x, 0.0, 1.0, n);
// Set up output file and strem
std::string filename = "datapoints.txt";
std::ofstream outfile;
outfile.open(filename);
@ -32,21 +51,5 @@ int main() {
<< std::endl;
}
outfile.close();
return 0;
};
double u(double x) {
double result;
result = 1 - (1 - exp(-10))*x - exp(-10*x);
return result;
};
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
double step = (stop - start) / n;
for (int i = 0; i <= vec.size(); i++) {
vec[i] = i * step;
}
}

View file

@ -1,17 +1,19 @@
import numpy as np
import matplotlib.pyplot as plt
def main():
FILENAME = "analytical_solution.pdf"
x = []
y = []
v = []
with open('testdata.txt') as f:
for line in f:
a, b, c = line.strip().split()
x.append(float(a))
# y.append(float(b))
v.append(float(c))
fig, ax = plt.subplots()
ax.plot(x, v)
plt.show()
# plt.savefig("main.png")
with open('analytical_solution.txt') as f:
for line in f:
a, b = line.strip().split()
x.append(float(a))
v.append(float(b))
plt.plot(x, v)
plt.savefig(FILENAME)
if __name__ == "__main__":
main()