Compare commits
1 Commits
7-solve-pr
...
5-solve-pr
| Author | SHA1 | Date | |
|---|---|---|---|
| 42f85c1eb7 |
0
include/problem2.hpp
Normal file
0
include/problem2.hpp
Normal file
Binary file not shown.
@@ -84,22 +84,90 @@
|
|||||||
|
|
||||||
\textit{https://github.uio.no/FYS3150-G2-2023/Project-1}
|
\textit{https://github.uio.no/FYS3150-G2-2023/Project-1}
|
||||||
|
|
||||||
\input{problems/problem1}
|
\section*{Problem 1}
|
||||||
|
|
||||||
\input{problems/problem2}
|
% Do the double integral
|
||||||
|
\begin{align*}
|
||||||
|
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
|
||||||
|
&= \int \int -100 e^{-10x} dx^2 \\
|
||||||
|
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
|
||||||
|
&= \int 10 e^{-10x} + c_1 dx \\
|
||||||
|
&= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\
|
||||||
|
&= -e^{-10x} + c_1 x + c_2
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\input{problems/problem3}
|
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
|
||||||
|
|
||||||
\input{problems/problem4}
|
\begin{align*}
|
||||||
|
u(0) &= 0 \\
|
||||||
|
-e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\
|
||||||
|
-1 + c_2 &= 0 \\
|
||||||
|
c_2 &= 1
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\input{problems/problem5}
|
\begin{align*}
|
||||||
|
u(1) &= 0 \\
|
||||||
|
-e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\
|
||||||
|
-e^{-10} + c_1 + c_2 &= 0 \\
|
||||||
|
c_1 &= e^{-10} - c_2\\
|
||||||
|
c_1 &= e^{-10} - 1\\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\input{problems/problem6}
|
Using the values that we found for $c_1$ and $c_2$, we get
|
||||||
|
|
||||||
\input{problems/problem7}
|
\begin{align*}
|
||||||
|
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
|
||||||
|
&= 1 - (1 - e^{-10}) - e^{-10x}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\input{problems/problem8}
|
\section*{Problem 2}
|
||||||
|
|
||||||
\input{problems/problem9}
|
% Write which .cpp/.hpp/.py (using a link?) files are relevant for this and show the plot generated.
|
||||||
|
|
||||||
|
\section*{Problem 3}
|
||||||
|
|
||||||
|
% Show how it's derived and where we found the derivation.
|
||||||
|
|
||||||
|
\section*{Problem 4}
|
||||||
|
|
||||||
|
% Show that each iteration of the discretized version naturally creates a matrix equation.
|
||||||
|
|
||||||
|
\section*{Problem 5}
|
||||||
|
|
||||||
|
\subsection*{a)}
|
||||||
|
|
||||||
|
% Phrase it better
|
||||||
|
$n = m - 2$, since $\textbf{A}$ is used to solve for all of the points in
|
||||||
|
between the end-points $0$ and $1$. For the complete solution, we need to add
|
||||||
|
$u(0)$ and $u(1)$.
|
||||||
|
|
||||||
|
\subsection*{b)}
|
||||||
|
|
||||||
|
When solving for $\vec{v}$, we find the approximate solutions for $u(x)$
|
||||||
|
that are in between the end-points, but not the end-points themselves.
|
||||||
|
|
||||||
|
\section*{Problem 6}
|
||||||
|
|
||||||
|
\subsection*{a)}
|
||||||
|
|
||||||
|
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
||||||
|
|
||||||
|
\subsection*{b)}
|
||||||
|
|
||||||
|
% Figure it out
|
||||||
|
|
||||||
|
% Linelevant files on gh and possibly add some comments
|
||||||
|
|
||||||
|
\section*{Problem 8}
|
||||||
|
|
||||||
|
%link to relvant files and show plots
|
||||||
|
|
||||||
|
\section*{Problem 9}
|
||||||
|
|
||||||
|
% Shon*{Proalgorithm, then calculate FLOPs, then link to relevant files
|
||||||
|
|
||||||
|
\section*{Problem 10}
|
||||||
|
|
||||||
|
% Time and show result, and link to relevant files
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|||||||
@@ -1,35 +0,0 @@
|
|||||||
\section*{Problem 1}
|
|
||||||
|
|
||||||
% Do the double integral
|
|
||||||
\begin{align*}
|
|
||||||
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
|
|
||||||
&= \int \int -100 e^{-10x} dx^2 \\
|
|
||||||
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
|
|
||||||
&= \int 10 e^{-10x} + c_1 dx \\
|
|
||||||
&= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\
|
|
||||||
&= -e^{-10x} + c_1 x + c_2
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
|
|
||||||
|
|
||||||
\begin{align*}
|
|
||||||
u(0) &= 0 \\
|
|
||||||
-e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\
|
|
||||||
-1 + c_2 &= 0 \\
|
|
||||||
c_2 &= 1
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
\begin{align*}
|
|
||||||
u(1) &= 0 \\
|
|
||||||
-e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\
|
|
||||||
-e^{-10} + c_1 + c_2 &= 0 \\
|
|
||||||
c_1 &= e^{-10} - c_2\\
|
|
||||||
c_1 &= e^{-10} - 1\\
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
Using the values that we found for $c_1$ and $c_2$, we get
|
|
||||||
|
|
||||||
\begin{align*}
|
|
||||||
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
|
|
||||||
&= 1 - (1 - e^{-10}) - e^{-10x}
|
|
||||||
\end{align*}
|
|
||||||
@@ -1,3 +0,0 @@
|
|||||||
\section*{Problem 10}
|
|
||||||
|
|
||||||
% Time and show result, and link to relevant files
|
|
||||||
@@ -1,3 +0,0 @@
|
|||||||
\section*{Problem 2}
|
|
||||||
|
|
||||||
% Write which .cpp/.hpp/.py (using a link?) files are relevant for this and show the plot generated.
|
|
||||||
@@ -1,4 +0,0 @@
|
|||||||
|
|
||||||
\section*{Problem 3}
|
|
||||||
|
|
||||||
% Show how it's derived and where we found the derivation.
|
|
||||||
@@ -1,3 +0,0 @@
|
|||||||
\section*{Problem 4}
|
|
||||||
|
|
||||||
% Show that each iteration of the discretized version naturally creates a matrix equation.
|
|
||||||
@@ -1,6 +0,0 @@
|
|||||||
|
|
||||||
\section*{Problem 5}
|
|
||||||
|
|
||||||
\subsection*{a)}
|
|
||||||
|
|
||||||
\subsection*{b)}
|
|
||||||
@@ -1,9 +0,0 @@
|
|||||||
\section*{Problem 6}
|
|
||||||
|
|
||||||
\subsection*{a)}
|
|
||||||
|
|
||||||
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
|
||||||
|
|
||||||
\subsection*{b)}
|
|
||||||
|
|
||||||
% Figure it out
|
|
||||||
@@ -1,3 +0,0 @@
|
|||||||
\section*{Problem 7}
|
|
||||||
|
|
||||||
% Link to relevant files on gh and possibly add some comments
|
|
||||||
@@ -1,3 +0,0 @@
|
|||||||
\section*{Problem 8}
|
|
||||||
|
|
||||||
%link to relvant files and show plots
|
|
||||||
@@ -1,3 +0,0 @@
|
|||||||
\section*{Problem 9}
|
|
||||||
|
|
||||||
% Show the algorithm, then calculate FLOPs, then link to relevant files
|
|
||||||
@@ -1,52 +0,0 @@
|
|||||||
#include <iostream>
|
|
||||||
#include <cmath>
|
|
||||||
#include <vector>
|
|
||||||
#include <string>
|
|
||||||
#include <numeric>
|
|
||||||
#include <fstream>
|
|
||||||
#include <iomanip>
|
|
||||||
|
|
||||||
double u(double x);
|
|
||||||
void generate_range(std::vector<double> &vec, double start, double stop, int n);
|
|
||||||
|
|
||||||
int main() {
|
|
||||||
int n = 1000;
|
|
||||||
|
|
||||||
std::vector<double> x(n), y(n);
|
|
||||||
generate_range(x, 0.0, 1.0, n);
|
|
||||||
|
|
||||||
// Set up output file and strem
|
|
||||||
std::string filename = "datapoints.txt";
|
|
||||||
std::ofstream outfile;
|
|
||||||
outfile.open(filename);
|
|
||||||
|
|
||||||
// Parameters for formatting
|
|
||||||
int width = 12;
|
|
||||||
int prec = 4;
|
|
||||||
|
|
||||||
// Calculate u(x) and write to file
|
|
||||||
for (int i = 0; i <= x.size(); i++) {
|
|
||||||
y[i] = u(x[i]);
|
|
||||||
outfile << std::setw(width) << std::setprecision(prec) << std::scientific << x[i]
|
|
||||||
<< std::setw(width) << std::setprecision(prec) << std::scientific << y[i]
|
|
||||||
<< std::endl;
|
|
||||||
}
|
|
||||||
outfile.close();
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
double u(double x) {
|
|
||||||
double result;
|
|
||||||
|
|
||||||
result = 1 - (1 - exp(-10))*x - exp(-10*x);
|
|
||||||
return result;
|
|
||||||
};
|
|
||||||
|
|
||||||
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
|
|
||||||
double step = (stop - start) / n;
|
|
||||||
|
|
||||||
for (int i = 0; i <= vec.size(); i++) {
|
|
||||||
vec[i] = i * step;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -1,17 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
x = []
|
|
||||||
y = []
|
|
||||||
v = []
|
|
||||||
with open('testdata.txt') as f:
|
|
||||||
for line in f:
|
|
||||||
a, b, c = line.strip().split()
|
|
||||||
x.append(float(a))
|
|
||||||
# y.append(float(b))
|
|
||||||
v.append(float(c))
|
|
||||||
|
|
||||||
fig, ax = plt.subplots()
|
|
||||||
ax.plot(x, v)
|
|
||||||
plt.show()
|
|
||||||
# plt.savefig("main.png")
|
|
||||||
24
src/main.cpp
24
src/main.cpp
@@ -1,24 +0,0 @@
|
|||||||
#include "GeneralAlgorithm.hpp"
|
|
||||||
#include <armadillo>
|
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
double f(double x) {
|
|
||||||
return 100. * std::exp(-10.*x);
|
|
||||||
}
|
|
||||||
|
|
||||||
double a_sol(double x) {
|
|
||||||
return 1. - (1. - std::exp(-10)) * x - std::exp(-10*x);
|
|
||||||
}
|
|
||||||
|
|
||||||
int main() {
|
|
||||||
arma::mat A = arma::eye(3,3);
|
|
||||||
|
|
||||||
GeneralAlgorithm ga(3, &A, f, a_sol, 0., 1.);
|
|
||||||
|
|
||||||
ga.solve();
|
|
||||||
std::cout << "Time: " << ga.time(5) << std::endl;
|
|
||||||
ga.error();
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
}
|
|
||||||
@@ -1,162 +0,0 @@
|
|||||||
#include <armadillo>
|
|
||||||
#include <cmath>
|
|
||||||
#include <ctime>
|
|
||||||
#include <fstream>
|
|
||||||
#include <iomanip>
|
|
||||||
#include <ios>
|
|
||||||
#include <string>
|
|
||||||
|
|
||||||
#define TIMING_ITERATIONS 5
|
|
||||||
|
|
||||||
arma::vec* general_algorithm(
|
|
||||||
arma::vec* sub_diag,
|
|
||||||
arma::vec* main_diag,
|
|
||||||
arma::vec* sup_diag,
|
|
||||||
arma::vec* g_vec
|
|
||||||
)
|
|
||||||
{
|
|
||||||
int n = g_vec->n_elem;
|
|
||||||
double d;
|
|
||||||
|
|
||||||
for (int i = 1; i < n; i++) {
|
|
||||||
d = (*sub_diag)(i-1) / (*main_diag)(i-1);
|
|
||||||
(*main_diag)(i) -= d*(*sup_diag)(i-1);
|
|
||||||
(*g_vec)(i) -= d*(*g_vec)(i-1);
|
|
||||||
}
|
|
||||||
|
|
||||||
(*g_vec)(n-1) /= (*main_diag)(n-1);
|
|
||||||
|
|
||||||
for (int i = n-2; i >= 0; i--) {
|
|
||||||
(*g_vec)(i) = ((*g_vec)(i) - (*sup_diag)(i) * (*g_vec)(i+1)) / (*main_diag)(i);
|
|
||||||
}
|
|
||||||
return g_vec;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
arma::vec* special_algorithm(
|
|
||||||
double sub_sig,
|
|
||||||
double main_sig,
|
|
||||||
double sup_sig,
|
|
||||||
arma::vec* g_vec
|
|
||||||
)
|
|
||||||
{
|
|
||||||
int n = g_vec->n_elem;
|
|
||||||
arma::vec diag = arma::vec(n);
|
|
||||||
|
|
||||||
for (int i = 1; i < n; i++) {
|
|
||||||
// Calculate values for main diagonal based on indices
|
|
||||||
diag(i-1) = (double)(i+1) / i;
|
|
||||||
(*g_vec)(i) += (*g_vec)(i-1) / diag(i-1);
|
|
||||||
}
|
|
||||||
// The last element in main diagonal has value (i+1)/i = (n+1)/n
|
|
||||||
(*g_vec)(n-1) /= (double)(n+1) / (n);
|
|
||||||
|
|
||||||
for (int i = n-2; i >= 0; i--) {
|
|
||||||
(*g_vec)(i) = ((*g_vec)(i) + (*g_vec)(i+1))/ diag(i);
|
|
||||||
}
|
|
||||||
|
|
||||||
return g_vec;
|
|
||||||
}
|
|
||||||
|
|
||||||
void error(
|
|
||||||
std::string filename,
|
|
||||||
arma::vec* x_vec,
|
|
||||||
arma::vec* v_vec,
|
|
||||||
arma::vec* a_vec
|
|
||||||
)
|
|
||||||
{
|
|
||||||
std::ofstream ofile;
|
|
||||||
ofile.open(filename);
|
|
||||||
|
|
||||||
if (!ofile.is_open()) {
|
|
||||||
exit(1);
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i=0; i < a_vec->n_elem; i++) {
|
|
||||||
double sub = (*a_vec)(i) - (*v_vec)(i);
|
|
||||||
ofile << std::setprecision(8) << std::scientific << (*x_vec)(i)
|
|
||||||
<< std::setprecision(8) << std::scientific << std::log10(std::abs(sub))
|
|
||||||
<< std::setprecision(8) << std::scientific << std::log10(std::abs(sub/(*a_vec)(i)))
|
|
||||||
<< std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
ofile.close();
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
double f(double x) {
|
|
||||||
return 100*std::exp(-10*x);
|
|
||||||
}
|
|
||||||
|
|
||||||
void build_array(
|
|
||||||
int n_steps,
|
|
||||||
arma::vec* sub_diag,
|
|
||||||
arma::vec* main_diag,
|
|
||||||
arma::vec* sup_diag,
|
|
||||||
arma::vec* g_vec
|
|
||||||
)
|
|
||||||
{
|
|
||||||
sub_diag->resize(n_steps-2);
|
|
||||||
main_diag->resize(n_steps-1);
|
|
||||||
sup_diag->resize(n_steps-2);
|
|
||||||
|
|
||||||
sub_diag->fill(-1);
|
|
||||||
main_diag->fill(2);
|
|
||||||
sup_diag->fill(-1);
|
|
||||||
|
|
||||||
g_vec->resize(n_steps-1);
|
|
||||||
|
|
||||||
double step_size = 1./ (double) n_steps;
|
|
||||||
for (int i=0; i < n_steps-1; i++) {
|
|
||||||
(*g_vec)(i) = f((i+1)*step_size);
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
void timing() {
|
|
||||||
arma::vec sub_diag, main_diag, sup_diag, g_vec;
|
|
||||||
int n_steps;
|
|
||||||
|
|
||||||
std::ofstream ofile;
|
|
||||||
ofile.open("timing.txt");
|
|
||||||
|
|
||||||
// Timing
|
|
||||||
for (int i=1; i <= 8; i++) {
|
|
||||||
n_steps = std::pow(10, i);
|
|
||||||
clock_t g_1, g_2, s_1, s_2;
|
|
||||||
double g_res = 0, s_res = 0;
|
|
||||||
|
|
||||||
for (int j=0; j < TIMING_ITERATIONS; j++) {
|
|
||||||
build_array(n_steps, &sub_diag, &main_diag, &sup_diag, &g_vec);
|
|
||||||
|
|
||||||
g_1 = clock();
|
|
||||||
|
|
||||||
general_algorithm(&sub_diag, &main_diag, &sup_diag, &g_vec);
|
|
||||||
|
|
||||||
g_2 = clock();
|
|
||||||
|
|
||||||
g_res += (double) (g_2 - g_1) / CLOCKS_PER_SEC;
|
|
||||||
build_array(n_steps, &sub_diag, &main_diag, &sup_diag, &g_vec);
|
|
||||||
|
|
||||||
s_1 = clock();
|
|
||||||
|
|
||||||
special_algorithm(-1., 2., -1., &g_vec);
|
|
||||||
|
|
||||||
s_2 = clock();
|
|
||||||
|
|
||||||
s_res += (double) (s_2 - s_1) / CLOCKS_PER_SEC;
|
|
||||||
|
|
||||||
}
|
|
||||||
ofile
|
|
||||||
<< n_steps << ","
|
|
||||||
<< g_res / (double) TIMING_ITERATIONS << ","
|
|
||||||
<< s_res / (double) TIMING_ITERATIONS << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
ofile.close();
|
|
||||||
}
|
|
||||||
|
|
||||||
int main()
|
|
||||||
{
|
|
||||||
timing();
|
|
||||||
}
|
|
||||||
Reference in New Issue
Block a user