7 Commits

Author SHA1 Message Date
327af48e73 Remove comment for problem 3 2023-09-01 16:22:54 +02:00
450e1859b1 Solve prblem 3 and add it to latex file 2023-09-01 16:21:27 +02:00
0430b0fcf0 Merge pull request #13 from FYS3150-G2-2023/1-solve-problem-1
1 solve problem 1
2023-09-01 15:27:18 +02:00
2f9a39021b Add Janita's last name 2023-09-01 14:52:00 +02:00
c86c1dc73b Finish problem 1 2023-09-01 14:50:31 +02:00
cadee04b9f Add latex files 2023-09-01 14:49:44 +02:00
ab06e99c0d Merge pull request #12 from FYS3150-G2-2023/11-set-up-structure-in-latex
Set up the basic structure of latex file
2023-09-01 14:19:30 +02:00
3 changed files with 76 additions and 6 deletions

6
.gitignore vendored
View File

@@ -30,3 +30,9 @@
*.exe *.exe
*.out *.out
*.app *.app
# Latex
*.aux
*.log
*.out
*.bib

BIN
latex/assignment_1.pdf Normal file

Binary file not shown.

View File

@@ -74,8 +74,8 @@
\begin{document} \begin{document}
\title{Title of the document} % self-explanatory \title{Project 1} % self-explanatory
\author{Cory Balaton \& Janita} % self-explanatory \author{Cory Balaton \& Janita Willumsen} % self-explanatory
\date{\today} % self-explanatory \date{\today} % self-explanatory
\noaffiliation % ignore this, but keep it. \noaffiliation % ignore this, but keep it.
@@ -86,7 +86,38 @@
\section*{Problem 1} \section*{Problem 1}
% Do the double integral \begin{align*}
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
&= \int \int -100 e^{-10x} dx^2 \\
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
&= \int 10 e^{-10x} + c_1 dx \\
&= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\
&= -e^{-10x} + c_1 x + c_2
\end{align*}
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
\begin{align*}
u(0) &= 0 \\
-e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\
-1 + c_2 &= 0 \\
c_2 &= 1
\end{align*}
\begin{align*}
u(1) &= 0 \\
-e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\
-e^{-10} + c_1 + c_2 &= 0 \\
c_1 &= e^{-10} - c_2\\
c_1 &= e^{-10} - 1\\
\end{align*}
Using the values that we found for $c_1$ and $c_2$, we get
\begin{align*}
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
&= 1 - (1 - e^{-10}) - e^{-10x}
\end{align*}
\section*{Problem 2} \section*{Problem 2}
@@ -94,7 +125,40 @@
\section*{Problem 3} \section*{Problem 3}
% Show how it's derived and where we found the derivation. To derive the discretized version of the Poisson equation, we first need
the taylor expansion for $u(x)$ around $x + h$ and $x - h$.
\begin{align*}
u(x+h) &= u(x) + u'(x) h + \frac{1}{2} u''(x) h^2 + \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
\end{align*}
\begin{align*}
u(x-h) &= u(x) - u'(x) h + \frac{1}{2} u''(x) h^2 - \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
\end{align*}
If we add the equations above, we get this new equation:
\begin{align*}
u(x+h) + u(x-h) &= 2 u(x) + u''(x) h^2 + \mathcal{O}(h^4) \\
u(x+h) - 2 u(x) + u(x-h) + \mathcal{O}(h^4) &= u''(x) h^2 \\
u''(x) &= \frac{u(x+h) - 2 u(x) + u(x-h)}{h^2} + \mathcal{O}(h^2) \\
u_i''(x) &= \frac{u_{i+1} - 2 u_i + u_{i-1}}{h^2} + \mathcal{O}(h^2) \\
\end{align*}
We can then replace $\frac{d^2u}{dx^2}$ with the RHS (right-hand side) of the equation:
\begin{align*}
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\
\frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} + \mathcal{O}(h^2) &= 100 e^{-10x} \\
\end{align*}
And lastly, we leave out $\mathcal{O}(h^2)$ and change $u_i$ to $v_i$ to
differentiate between the exact solution and the approximate solution,
and get the discretized version of the equation:
\begin{align*}
align* \frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} &= 100 e^{-10x} \\
\end{align*}
\section*{Problem 4} \section*{Problem 4}
@@ -106,9 +170,9 @@
\subsection*{b)} \subsection*{b)}
\section{Problem 6} \section*{Problem 6}
\subsection{a)} \subsection*{a)}
% Use Gaussian elimination, and then use backwards substitution to solve the equation % Use Gaussian elimination, and then use backwards substitution to solve the equation