Edit problem 1 and add problem 3
This commit is contained in:
@@ -1,8 +1,17 @@
|
||||
\section*{Problem 1}
|
||||
|
||||
First, we rearrange the equation.
|
||||
|
||||
\begin{align*}
|
||||
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\
|
||||
\frac{d^2u}{dx^2} &= -100 e^{-10x} \\
|
||||
\end{align*}
|
||||
|
||||
Now we find $u(x)$.
|
||||
|
||||
% Do the double integral
|
||||
\begin{align*}
|
||||
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
|
||||
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2 \\
|
||||
&= \int \int -100 e^{-10x} dx^2 \\
|
||||
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
|
||||
&= \int 10 e^{-10x} + c_1 dx \\
|
||||
@@ -10,7 +19,7 @@
|
||||
&= -e^{-10x} + c_1 x + c_2
|
||||
\end{align*}
|
||||
|
||||
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
|
||||
Using the boundary conditions, we can find $c_1$ and $c_2$
|
||||
|
||||
\begin{align*}
|
||||
u(0) &= 0 \\
|
||||
|
||||
Reference in New Issue
Block a user