Edit problem 1 and add problem 3

This commit is contained in:
2023-09-08 12:08:02 +02:00
parent 996b99fca3
commit 400e8a29df
3 changed files with 15 additions and 6 deletions

View File

@@ -1,8 +1,17 @@
\section*{Problem 1}
First, we rearrange the equation.
\begin{align*}
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\
\frac{d^2u}{dx^2} &= -100 e^{-10x} \\
\end{align*}
Now we find $u(x)$.
% Do the double integral
\begin{align*}
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2 \\
&= \int \int -100 e^{-10x} dx^2 \\
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
&= \int 10 e^{-10x} + c_1 dx \\
@@ -10,7 +19,7 @@
&= -e^{-10x} + c_1 x + c_2
\end{align*}
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
Using the boundary conditions, we can find $c_1$ and $c_2$
\begin{align*}
u(0) &= 0 \\